<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
b25-wav2vec2-large-xls-r-romansh-colab
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3303
- Wer: 0.2415
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.1605 | 3.05 | 400 | 2.9535 | 1.0 |
2.9451 | 6.11 | 800 | 2.9092 | 1.0 |
1.7795 | 9.16 | 1200 | 0.4982 | 0.4951 |
0.4094 | 12.21 | 1600 | 0.3883 | 0.3575 |
0.2374 | 15.27 | 2000 | 0.3151 | 0.2876 |
0.1674 | 18.32 | 2400 | 0.3284 | 0.2783 |
0.1385 | 21.37 | 2800 | 0.3408 | 0.2641 |
0.1133 | 24.43 | 3200 | 0.3355 | 0.2538 |
0.1015 | 27.48 | 3600 | 0.3303 | 0.2415 |
Framework versions
- Transformers 4.26.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3