wav2vec2-large-xls-r-300m-german-with-lm
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the German set of the Common Voice dataset. It achieves a Word Error Rate of 8,8 percent on the evaluation set
Model description
German wav2vec2-xls-r-300m trained on the full train set of Common Voice dataset with a n-gram language model. Full code available in my Github repository
Citation
Feel free to cite this work by
@misc{mfleck/wav2vec2-large-xls-r-300m-german-with-lm,
title={XLS-R-300 Wav2Vec2 German with language model},
author={Fleck, Michael},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/mfleck/wav2vec2-large-xls-r-300m-german-with-lm}},
year={2022}
}
Intended uses & limitations
Inference Usage
from transformers import pipeline
pipe = pipeline(model="mfleck/wav2vec2-large-xls-r-300m-german-with-lm")
output = pipe("/path/to/file.wav",chunk_length_s=5, stride_length_s=1)
print(output["text"])
Training and evaluation data
Script used for training (takes about 80 hours on a single A100 40GB)
import random
import re
import json
from typing import Any, Dict, List, Optional, Union
import pandas as pd
import numpy as np
import torch
# import soundfile
from datasets import load_dataset, load_metric, Audio
from dataclasses import dataclass, field
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, TrainingArguments, Trainer, Wav2Vec2ForCTC
'''
Most parts of this script are following the tutorial: https://huggingface.co/blog/fine-tune-xlsr-wav2vec2
'''
common_voice_train = load_dataset("common_voice", "de", split="train+validation")
# Use train dataset with less training data
#common_voice_train = load_dataset("common_voice", "de", split="train[:3%]")
common_voice_test = load_dataset("common_voice", "de", split="test")
# Remove unused columns
common_voice_train = common_voice_train.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])
common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])
# Remove batches with chars which do not exist in German
print(len(common_voice_train))
regex = "[^A-Za-zäöüÄÖÜß,?.! ]+"
common_voice_train = common_voice_train.filter(lambda example: bool(re.search(regex, example['sentence']))==False)
common_voice_test = common_voice_test.filter(lambda example: bool(re.search(regex, example['sentence']))==False)
print(len(common_voice_train))
# Remove special chars from transcripts
chars_to_remove_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']'
def remove_special_characters(batch):
batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower()
return batch
common_voice_train = common_voice_train.map(remove_special_characters, num_proc=10)
common_voice_test = common_voice_test.map(remove_special_characters, num_proc=10)
# Show some random transcripts to proof that preprocessing worked as expected
def show_random_elements(dataset, num_examples=10):
assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset."
picks = []
for _ in range(num_examples):
pick = random.randint(0, len(dataset)-1)
while pick in picks:
pick = random.randint(0, len(dataset)-1)
picks.append(pick)
print(str(dataset[picks]))
show_random_elements(common_voice_train.remove_columns(["path","audio"]))
# Extract all chars which exist in datasets and add wav2vek tokens
def extract_all_chars(batch):
all_text = " ".join(batch["sentence"])
vocab = list(set(all_text))
return {"vocab": [vocab], "all_text": [all_text]}
vocab_train = common_voice_train.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=common_voice_train.column_names)
vocab_test = common_voice_test.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=common_voice_test.column_names)
vocab_list = list(set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0]))
vocab_dict = {v: k for k, v in enumerate(sorted(vocab_list))}
vocab_dict
vocab_dict["|"] = vocab_dict[" "]
del vocab_dict[" "]
vocab_dict["[UNK]"] = len(vocab_dict)
vocab_dict["[PAD]"] = len(vocab_dict)
len(vocab_dict)
with open('vocab.json', 'w') as vocab_file:
json.dump(vocab_dict, vocab_file)
# Create tokenizer and repo at Huggingface
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("./", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
repo_name = "wav2vec2-large-xls-r-300m-german-with-lm"
tokenizer.push_to_hub(repo_name)
print("pushed to hub")
# Create feature extractor and processor
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=True)
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
# Cast audio column
common_voice_train = common_voice_train.cast_column("audio", Audio(sampling_rate=16_000))
common_voice_test = common_voice_test.cast_column("audio", Audio(sampling_rate=16_000))
# Convert audio signal to array and 16khz sampling rate
def prepare_dataset(batch):
audio = batch["audio"]
# batched output is "un-batched"
batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
# Save an audio file to check if it gets loaded correctly
# soundfile.write("/home/debian/trainnew/test.wav",batch["input_values"],audio["sampling_rate"])
batch["input_length"] = len(batch["input_values"])
with processor.as_target_processor():
batch["labels"] = processor(batch["sentence"]).input_ids
return batch
common_voice_train = common_voice_train.map(prepare_dataset, remove_columns=common_voice_train.column_names)
common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names)
print("dataset prepared")
@dataclass
class DataCollatorCTCWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor (:class:`~transformers.Wav2Vec2Processor`)
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
"""
processor: Wav2Vec2Processor
padding: Union[bool, str] = True
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
input_features = [{"input_values": feature["input_values"]} for feature in features]
label_features = [{"input_ids": feature["labels"]} for feature in features]
batch = self.processor.pad(
input_features,
padding=self.padding,
return_tensors="pt",
)
with self.processor.as_target_processor():
labels_batch = self.processor.pad(
label_features,
padding=self.padding,
return_tensors="pt",
)
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
batch["labels"] = labels
return batch
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
# Use word error rate as metric
wer_metric = load_metric("wer")
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
# Model and training parameters
model = Wav2Vec2ForCTC.from_pretrained(
"facebook/wav2vec2-xls-r-300m",
attention_dropout=0.094,
hidden_dropout=0.01,
feat_proj_dropout=0.04,
mask_time_prob=0.08,
layerdrop=0.04,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
vocab_size=len(processor.tokenizer),
)
model.freeze_feature_extractor()
training_args = TrainingArguments(
output_dir=repo_name,
group_by_length=True,
per_device_train_batch_size=32,
gradient_accumulation_steps=2,
evaluation_strategy="steps",
num_train_epochs=20,
gradient_checkpointing=True,
fp16=True,
save_steps=5000,
eval_steps=5000,
logging_steps=100,
learning_rate=1e-4,
warmup_steps=500,
save_total_limit=3,
push_to_hub=True,
)
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=common_voice_train,
eval_dataset=common_voice_test,
tokenizer=processor.feature_extractor,
)
# Start fine tuning
trainer.train()
# When done push final model to Huggingface hub
trainer.push_to_hub()
The model achieves a Word Error Rate of 8,8% using the following script:
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
# load dataset
dataset = load_dataset("common_voice", "de", split="test")
# use only 1% of data
#dataset = load_dataset("common_voice", "de", split="test[:1%]")
# load processor
feature_extractor = AutoFeatureExtractor.from_pretrained("mfleck/wav2vec2-large-xls-r-300m-german-with-lm")
sampling_rate = feature_extractor.sampling_rate
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
# load eval pipeline
# device=0 means GPU, use device=-1 for CPU
asr = pipeline("automatic-speech-recognition", model="mfleck/wav2vec2-large-xls-r-300m-german-with-lm", device=0)
# Remove batches with chars which do not exist in German
regex = "[^A-Za-zäöüÄÖÜß,?.! ]+"
dataset = dataset.filter(lambda example: bool(re.search(regex, example['sentence']))==False)
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']'
# map function to decode audio
def map_to_pred(batch):
prediction = asr(batch["audio"]["array"], chunk_length_s=5, stride_length_s=1)
# Print automatic generated transcript
#print(str(prediction))
batch["prediction"] = prediction["text"]
text = batch["sentence"]
batch["target"] = re.sub(chars_to_ignore_regex, "", text.lower()) + " "
return batch
# run inference on all examples
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
# load metric
wer = load_metric("wer")
cer = load_metric("cer")
# compute metrics
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
# print results
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
print(result_str)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1396 | 1.42 | 5000 | 0.1449 | 0.1479 |
0.1169 | 2.83 | 10000 | 0.1285 | 0.1286 |
0.0938 | 4.25 | 15000 | 0.1277 | 0.1230 |
0.0924 | 5.67 | 20000 | 0.1305 | 0.1191 |
0.0765 | 7.09 | 25000 | 0.1256 | 0.1158 |
0.0749 | 8.5 | 30000 | 0.1186 | 0.1092 |
0.066 | 9.92 | 35000 | 0.1173 | 0.1068 |
0.0581 | 11.34 | 40000 | 0.1225 | 0.1030 |
0.0582 | 12.75 | 45000 | 0.1153 | 0.0999 |
0.0507 | 14.17 | 50000 | 0.1182 | 0.0971 |
0.0491 | 15.59 | 55000 | 0.1136 | 0.0939 |
0.045 | 17.01 | 60000 | 0.1140 | 0.0914 |
0.0395 | 18.42 | 65000 | 0.1160 | 0.0902 |
0.037 | 19.84 | 70000 | 0.1148 | 0.0882 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.9.0+cu111
- Datasets 1.18.4
- Tokenizers 0.11.6