<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
goat923/my_awesome_wnut_model
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1165
- Validation Loss: 0.2494
- Train Precision: 0.6287
- Train Recall: 0.4557
- Train F1: 0.5284
- Train Accuracy: 0.9482
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.3527 | 0.3075 | 0.3319 | 0.0945 | 0.1471 | 0.9281 | 0 |
0.1583 | 0.2594 | 0.5886 | 0.4211 | 0.4909 | 0.9455 | 1 |
0.1165 | 0.2494 | 0.6287 | 0.4557 | 0.5284 | 0.9482 | 2 |
Framework versions
- Transformers 4.32.1
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3