<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
whisper_input_decoder_no_lob__0090
This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1288
- Train Accuracy: 0.0352
- Train Wermet: 0.0377
- Validation Loss: 1.2985
- Validation Accuracy: 0.0208
- Validation Wermet: 0.3371
- Epoch: 89
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
---|---|---|---|---|---|---|
5.4122 | 0.0107 | 0.9328 | 3.9759 | 0.0114 | 0.9606 | 0 |
4.7176 | 0.0116 | 0.8683 | 3.9404 | 0.0114 | 0.9334 | 1 |
4.6750 | 0.0117 | 0.8478 | 3.9211 | 0.0115 | 0.9237 | 2 |
4.6511 | 0.0117 | 0.8413 | 3.8864 | 0.0115 | 0.9331 | 3 |
4.6294 | 0.0118 | 0.8270 | 3.8729 | 0.0115 | 0.9228 | 4 |
4.6134 | 0.0118 | 0.8199 | 3.8690 | 0.0114 | 0.9451 | 5 |
4.5980 | 0.0118 | 0.8102 | 3.8491 | 0.0115 | 0.9152 | 6 |
4.5759 | 0.0119 | 0.7890 | 3.8366 | 0.0116 | 0.8691 | 7 |
4.5518 | 0.0120 | 0.7694 | 3.8081 | 0.0116 | 0.9013 | 8 |
4.5219 | 0.0121 | 0.7591 | 3.7734 | 0.0118 | 0.8383 | 9 |
4.4761 | 0.0122 | 0.7400 | 3.7156 | 0.0120 | 0.8125 | 10 |
4.4139 | 0.0125 | 0.7257 | 3.6311 | 0.0121 | 0.8188 | 11 |
4.3113 | 0.0128 | 0.7127 | 3.5089 | 0.0124 | 0.8008 | 12 |
4.1608 | 0.0132 | 0.7088 | 3.3587 | 0.0127 | 0.7742 | 13 |
3.9595 | 0.0138 | 0.7012 | 3.1493 | 0.0132 | 0.7718 | 14 |
3.7188 | 0.0145 | 0.6820 | 2.8784 | 0.0139 | 0.7292 | 15 |
3.4775 | 0.0153 | 0.6678 | 2.6716 | 0.0144 | 0.7074 | 16 |
3.2575 | 0.0160 | 0.6481 | 2.4980 | 0.0149 | 0.6764 | 17 |
3.0615 | 0.0167 | 0.6314 | 2.3456 | 0.0153 | 0.6476 | 18 |
2.8715 | 0.0174 | 0.6094 | 2.2090 | 0.0158 | 0.6210 | 19 |
2.6930 | 0.0181 | 0.5931 | 2.0918 | 0.0162 | 0.5992 | 20 |
2.5383 | 0.0187 | 0.5739 | 1.9769 | 0.0166 | 0.5791 | 21 |
2.3952 | 0.0193 | 0.5512 | 1.9042 | 0.0168 | 0.5589 | 22 |
2.2427 | 0.0201 | 0.5333 | 1.8028 | 0.0172 | 0.5394 | 23 |
2.1236 | 0.0206 | 0.5174 | 1.7434 | 0.0174 | 0.5240 | 24 |
2.0315 | 0.0211 | 0.4978 | 1.6755 | 0.0177 | 0.5084 | 25 |
1.9066 | 0.0217 | 0.4773 | 1.6534 | 0.0178 | 0.4947 | 26 |
1.8279 | 0.0221 | 0.4596 | 1.5606 | 0.0182 | 0.4788 | 27 |
1.7325 | 0.0227 | 0.4412 | 1.5173 | 0.0184 | 0.4667 | 28 |
1.6416 | 0.0232 | 0.4199 | 1.4733 | 0.0186 | 0.4511 | 29 |
1.5702 | 0.0236 | 0.4028 | 1.4519 | 0.0187 | 0.4442 | 30 |
1.4787 | 0.0241 | 0.3839 | 1.4213 | 0.0188 | 0.4322 | 31 |
1.4238 | 0.0244 | 0.3700 | 1.3971 | 0.0190 | 0.4272 | 32 |
1.3561 | 0.0249 | 0.3594 | 1.3499 | 0.0192 | 0.4171 | 33 |
1.2828 | 0.0254 | 0.3431 | 1.3555 | 0.0192 | 0.4097 | 34 |
1.2318 | 0.0257 | 0.3277 | 1.3183 | 0.0194 | 0.4035 | 35 |
1.1668 | 0.0262 | 0.3201 | 1.3068 | 0.0195 | 0.3978 | 36 |
1.1571 | 0.0261 | 0.3105 | 1.2901 | 0.0195 | 0.3916 | 37 |
1.0812 | 0.0267 | 0.2989 | 1.2720 | 0.0197 | 0.3860 | 38 |
1.0134 | 0.0273 | 0.2863 | 1.2593 | 0.0197 | 0.3777 | 39 |
0.9986 | 0.0273 | 0.2769 | 1.2629 | 0.0198 | 0.3754 | 40 |
0.9322 | 0.0279 | 0.2653 | 1.2320 | 0.0199 | 0.3694 | 41 |
0.9021 | 0.0281 | 0.2552 | 1.2308 | 0.0200 | 0.3651 | 42 |
0.8583 | 0.0284 | 0.2444 | 1.2199 | 0.0200 | 0.3614 | 43 |
0.8101 | 0.0288 | 0.2355 | 1.2120 | 0.0200 | 0.3597 | 44 |
0.8045 | 0.0288 | 0.2299 | 1.2023 | 0.0201 | 0.3567 | 45 |
0.7823 | 0.0290 | 0.2213 | 1.2075 | 0.0201 | 0.3529 | 46 |
0.7186 | 0.0296 | 0.2107 | 1.1917 | 0.0202 | 0.3530 | 47 |
0.6949 | 0.0298 | 0.2028 | 1.1926 | 0.0202 | 0.3465 | 48 |
0.6669 | 0.0300 | 0.1943 | 1.1902 | 0.0203 | 0.3446 | 49 |
0.6125 | 0.0305 | 0.1842 | 1.1892 | 0.0203 | 0.3437 | 50 |
0.5926 | 0.0307 | 0.1778 | 1.2058 | 0.0203 | 0.3450 | 51 |
0.6055 | 0.0305 | 0.1738 | 1.1859 | 0.0203 | 0.3394 | 52 |
0.5828 | 0.0307 | 0.1653 | 1.1921 | 0.0203 | 0.3379 | 53 |
0.5507 | 0.0311 | 0.1569 | 1.1906 | 0.0204 | 0.3385 | 54 |
0.5050 | 0.0315 | 0.1485 | 1.1834 | 0.0205 | 0.3361 | 55 |
0.4878 | 0.0316 | 0.1447 | 1.1815 | 0.0205 | 0.3329 | 56 |
0.4825 | 0.0317 | 0.1410 | 1.2096 | 0.0204 | 0.3359 | 57 |
0.4987 | 0.0315 | 0.1374 | 1.2000 | 0.0204 | 0.3352 | 58 |
0.4576 | 0.0319 | 0.1305 | 1.1868 | 0.0205 | 0.3329 | 59 |
0.4185 | 0.0323 | 0.1215 | 1.2043 | 0.0205 | 0.3322 | 60 |
0.3889 | 0.0326 | 0.1156 | 1.1853 | 0.0206 | 0.3302 | 61 |
0.3790 | 0.0327 | 0.1101 | 1.2028 | 0.0205 | 0.3316 | 62 |
0.4072 | 0.0324 | 0.1110 | 1.2502 | 0.0203 | 0.3309 | 63 |
0.3519 | 0.0330 | 0.1020 | 1.1959 | 0.0206 | 0.3284 | 64 |
0.3861 | 0.0326 | 0.1034 | 1.1885 | 0.0206 | 0.3271 | 65 |
0.3789 | 0.0326 | 0.0961 | 1.1969 | 0.0206 | 0.3298 | 66 |
0.3233 | 0.0332 | 0.0905 | 1.1922 | 0.0207 | 0.3280 | 67 |
0.2956 | 0.0335 | 0.0854 | 1.2003 | 0.0207 | 0.3296 | 68 |
0.2666 | 0.0339 | 0.0796 | 1.2141 | 0.0207 | 0.3252 | 69 |
0.3181 | 0.0333 | 0.0813 | 1.2133 | 0.0207 | 0.3302 | 70 |
0.3032 | 0.0335 | 0.0770 | 1.2170 | 0.0207 | 0.3315 | 71 |
0.2746 | 0.0337 | 0.0741 | 1.2180 | 0.0207 | 0.3299 | 72 |
0.2549 | 0.0339 | 0.0705 | 1.2496 | 0.0206 | 0.3308 | 73 |
0.2529 | 0.0339 | 0.0685 | 1.2239 | 0.0207 | 0.3321 | 74 |
0.2427 | 0.0340 | 0.0671 | 1.2351 | 0.0207 | 0.3292 | 75 |
0.2166 | 0.0343 | 0.0623 | 1.2361 | 0.0207 | 0.3313 | 76 |
0.2030 | 0.0345 | 0.0585 | 1.2462 | 0.0207 | 0.3312 | 77 |
0.2126 | 0.0344 | 0.0566 | 1.2441 | 0.0207 | 0.3313 | 78 |
0.2166 | 0.0343 | 0.0569 | 1.2506 | 0.0207 | 0.3334 | 79 |
0.2088 | 0.0344 | 0.0562 | 1.2557 | 0.0207 | 0.3389 | 80 |
0.2212 | 0.0342 | 0.0560 | 1.2652 | 0.0207 | 0.3334 | 81 |
0.2256 | 0.0343 | 0.0543 | 1.2543 | 0.0207 | 0.3393 | 82 |
0.1915 | 0.0346 | 0.0501 | 1.2540 | 0.0207 | 0.3299 | 83 |
0.1544 | 0.0350 | 0.0443 | 1.2676 | 0.0207 | 0.3347 | 84 |
0.1567 | 0.0350 | 0.0435 | 1.2740 | 0.0207 | 0.3375 | 85 |
0.1329 | 0.0352 | 0.0405 | 1.2833 | 0.0207 | 0.3398 | 86 |
0.1261 | 0.0353 | 0.0392 | 1.3088 | 0.0206 | 0.3397 | 87 |
0.1547 | 0.0350 | 0.0438 | 1.2933 | 0.0207 | 0.3279 | 88 |
0.1288 | 0.0352 | 0.0377 | 1.2985 | 0.0208 | 0.3371 | 89 |
Framework versions
- Transformers 4.33.0.dev0
- TensorFlow 2.13.0
- Tokenizers 0.13.3