<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-09-05_txt_vis_con_enc_4_6_7_11_12_ramp
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7743
- Accuracy: 0.7375
- Exit 0 Accuracy: 0.045
- Exit 1 Accuracy: 0.6925
- Exit 2 Accuracy: 0.735
- Exit 3 Accuracy: 0.74
- Exit 4 Accuracy: 0.74
- Exit 5 Accuracy: 0.7325
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy | Exit 5 Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6769 | 0.175 | 0.0875 | 0.0975 | 0.07 | 0.0625 | 0.0625 | 0.04 |
No log | 1.98 | 33 | 2.4757 | 0.2775 | 0.0875 | 0.0825 | 0.115 | 0.1 | 0.0625 | 0.1275 |
No log | 3.0 | 50 | 2.2161 | 0.36 | 0.09 | 0.07 | 0.1575 | 0.1025 | 0.0625 | 0.22 |
No log | 3.96 | 66 | 1.9839 | 0.4125 | 0.0825 | 0.085 | 0.19 | 0.1425 | 0.0625 | 0.26 |
No log | 4.98 | 83 | 1.7415 | 0.5525 | 0.085 | 0.065 | 0.22 | 0.135 | 0.0625 | 0.34 |
No log | 6.0 | 100 | 1.5455 | 0.61 | 0.0875 | 0.065 | 0.2525 | 0.2275 | 0.0625 | 0.45 |
No log | 6.96 | 116 | 1.3759 | 0.6525 | 0.085 | 0.065 | 0.265 | 0.345 | 0.0625 | 0.4825 |
No log | 7.98 | 133 | 1.2670 | 0.6775 | 0.0875 | 0.065 | 0.33 | 0.4225 | 0.0625 | 0.585 |
No log | 9.0 | 150 | 1.1322 | 0.705 | 0.085 | 0.0775 | 0.36 | 0.46 | 0.0625 | 0.6225 |
No log | 9.96 | 166 | 1.0449 | 0.7325 | 0.0875 | 0.09 | 0.385 | 0.4775 | 0.0625 | 0.655 |
No log | 10.98 | 183 | 0.9958 | 0.7225 | 0.085 | 0.085 | 0.43 | 0.54 | 0.0625 | 0.69 |
No log | 12.0 | 200 | 1.0019 | 0.7075 | 0.0775 | 0.085 | 0.4325 | 0.56 | 0.0625 | 0.7 |
No log | 12.96 | 216 | 0.9836 | 0.7175 | 0.0725 | 0.0875 | 0.4225 | 0.5925 | 0.0625 | 0.71 |
No log | 13.98 | 233 | 0.9949 | 0.7025 | 0.07 | 0.095 | 0.4925 | 0.55 | 0.0625 | 0.6925 |
No log | 15.0 | 250 | 0.9548 | 0.7325 | 0.085 | 0.0975 | 0.5025 | 0.5925 | 0.095 | 0.73 |
No log | 15.96 | 266 | 0.9608 | 0.7475 | 0.0725 | 0.105 | 0.5025 | 0.6325 | 0.17 | 0.7575 |
No log | 16.98 | 283 | 0.9872 | 0.76 | 0.065 | 0.11 | 0.5225 | 0.6525 | 0.2975 | 0.75 |
No log | 18.0 | 300 | 1.0311 | 0.7475 | 0.065 | 0.12 | 0.555 | 0.67 | 0.405 | 0.7575 |
No log | 18.96 | 316 | 1.0094 | 0.7575 | 0.06 | 0.155 | 0.605 | 0.6725 | 0.575 | 0.755 |
No log | 19.98 | 333 | 1.0767 | 0.76 | 0.0625 | 0.17 | 0.63 | 0.6725 | 0.64 | 0.7625 |
No log | 21.0 | 350 | 1.1270 | 0.75 | 0.065 | 0.2 | 0.6525 | 0.67 | 0.685 | 0.745 |
No log | 21.96 | 366 | 1.1407 | 0.745 | 0.06 | 0.2175 | 0.6475 | 0.6675 | 0.735 | 0.7425 |
No log | 22.98 | 383 | 1.1239 | 0.76 | 0.0725 | 0.235 | 0.665 | 0.69 | 0.7775 | 0.765 |
No log | 24.0 | 400 | 1.1732 | 0.7425 | 0.0675 | 0.2525 | 0.685 | 0.6975 | 0.745 | 0.7425 |
No log | 24.96 | 416 | 1.2150 | 0.7575 | 0.0625 | 0.265 | 0.6825 | 0.7075 | 0.76 | 0.755 |
No log | 25.98 | 433 | 1.2254 | 0.765 | 0.0625 | 0.27 | 0.7075 | 0.7025 | 0.7675 | 0.765 |
No log | 27.0 | 450 | 1.2767 | 0.755 | 0.055 | 0.31 | 0.71 | 0.74 | 0.7525 | 0.76 |
No log | 27.96 | 466 | 1.2901 | 0.77 | 0.055 | 0.3375 | 0.7225 | 0.7425 | 0.7725 | 0.7725 |
No log | 28.98 | 483 | 1.3303 | 0.765 | 0.055 | 0.4 | 0.735 | 0.745 | 0.7725 | 0.7675 |
1.4172 | 30.0 | 500 | 1.4133 | 0.74 | 0.0575 | 0.4225 | 0.705 | 0.725 | 0.7425 | 0.7425 |
1.4172 | 30.96 | 516 | 1.4325 | 0.765 | 0.06 | 0.4425 | 0.725 | 0.7375 | 0.7625 | 0.765 |
1.4172 | 31.98 | 533 | 1.4553 | 0.755 | 0.0575 | 0.5 | 0.7125 | 0.7325 | 0.7575 | 0.7525 |
1.4172 | 33.0 | 550 | 1.4908 | 0.74 | 0.06 | 0.53 | 0.715 | 0.7275 | 0.7375 | 0.74 |
1.4172 | 33.96 | 566 | 1.4996 | 0.7475 | 0.0575 | 0.56 | 0.715 | 0.735 | 0.75 | 0.7475 |
1.4172 | 34.98 | 583 | 1.5083 | 0.75 | 0.06 | 0.5825 | 0.735 | 0.7425 | 0.755 | 0.75 |
1.4172 | 36.0 | 600 | 1.6148 | 0.74 | 0.0525 | 0.6025 | 0.72 | 0.735 | 0.7425 | 0.74 |
1.4172 | 36.96 | 616 | 1.5791 | 0.7525 | 0.055 | 0.605 | 0.74 | 0.745 | 0.76 | 0.7525 |
1.4172 | 37.98 | 633 | 1.6097 | 0.745 | 0.0525 | 0.6225 | 0.7325 | 0.7425 | 0.745 | 0.7425 |
1.4172 | 39.0 | 650 | 1.6481 | 0.7425 | 0.055 | 0.6425 | 0.73 | 0.735 | 0.745 | 0.745 |
1.4172 | 39.96 | 666 | 1.6633 | 0.7475 | 0.05 | 0.6625 | 0.71 | 0.7325 | 0.7425 | 0.7475 |
1.4172 | 40.98 | 683 | 1.6485 | 0.7475 | 0.05 | 0.6675 | 0.73 | 0.7475 | 0.75 | 0.75 |
1.4172 | 42.0 | 700 | 1.7000 | 0.7425 | 0.045 | 0.665 | 0.73 | 0.735 | 0.74 | 0.74 |
1.4172 | 42.96 | 716 | 1.7002 | 0.745 | 0.045 | 0.6725 | 0.725 | 0.7325 | 0.745 | 0.74 |
1.4172 | 43.98 | 733 | 1.6880 | 0.7425 | 0.045 | 0.6775 | 0.7325 | 0.745 | 0.7425 | 0.7425 |
1.4172 | 45.0 | 750 | 1.7557 | 0.7375 | 0.0425 | 0.675 | 0.7275 | 0.74 | 0.7425 | 0.735 |
1.4172 | 45.96 | 766 | 1.7474 | 0.74 | 0.04 | 0.68 | 0.7275 | 0.74 | 0.74 | 0.7375 |
1.4172 | 46.98 | 783 | 1.7391 | 0.735 | 0.0425 | 0.6875 | 0.735 | 0.735 | 0.7375 | 0.735 |
1.4172 | 48.0 | 800 | 1.7523 | 0.7325 | 0.0425 | 0.6925 | 0.735 | 0.7375 | 0.735 | 0.73 |
1.4172 | 48.96 | 816 | 1.7304 | 0.7375 | 0.0425 | 0.6875 | 0.7375 | 0.735 | 0.7425 | 0.7325 |
1.4172 | 49.98 | 833 | 1.7392 | 0.74 | 0.0425 | 0.69 | 0.735 | 0.7425 | 0.7475 | 0.7375 |
1.4172 | 51.0 | 850 | 1.7644 | 0.74 | 0.0425 | 0.6925 | 0.7375 | 0.745 | 0.7425 | 0.7375 |
1.4172 | 51.96 | 866 | 1.7633 | 0.735 | 0.0425 | 0.6925 | 0.735 | 0.7425 | 0.7375 | 0.735 |
1.4172 | 52.98 | 883 | 1.7486 | 0.74 | 0.045 | 0.6875 | 0.74 | 0.745 | 0.7375 | 0.735 |
1.4172 | 54.0 | 900 | 1.7562 | 0.7325 | 0.045 | 0.69 | 0.7375 | 0.7425 | 0.7375 | 0.7325 |
1.4172 | 54.96 | 916 | 1.7660 | 0.735 | 0.045 | 0.6925 | 0.735 | 0.745 | 0.7425 | 0.7325 |
1.4172 | 55.98 | 933 | 1.7664 | 0.735 | 0.045 | 0.6925 | 0.735 | 0.74 | 0.7425 | 0.7325 |
1.4172 | 57.0 | 950 | 1.7739 | 0.7375 | 0.045 | 0.695 | 0.735 | 0.74 | 0.7425 | 0.7325 |
1.4172 | 57.6 | 960 | 1.7743 | 0.7375 | 0.045 | 0.6925 | 0.735 | 0.74 | 0.74 | 0.7325 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3