<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-09-05_txt_vis_enc_4_5_6_7_11_12_rmp
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7887
- Accuracy: 0.7325
- Exit 0 Accuracy: 0.0575
- Exit 1 Accuracy: 0.6525
- Exit 2 Accuracy: 0.7075
- Exit 3 Accuracy: 0.7075
- Exit 4 Accuracy: 0.7075
- Exit 5 Accuracy: 0.7325
- Exit 6 Accuracy: 0.7375
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy | Exit 5 Accuracy | Exit 6 Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6685 | 0.1775 | 0.08 | 0.065 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.1 |
No log | 1.98 | 33 | 2.5182 | 0.2375 | 0.07 | 0.0675 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.155 |
No log | 3.0 | 50 | 2.3044 | 0.36 | 0.0725 | 0.1075 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.225 |
No log | 3.96 | 66 | 2.0763 | 0.415 | 0.07 | 0.1075 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.255 |
No log | 4.98 | 83 | 1.8495 | 0.5325 | 0.07 | 0.1025 | 0.0625 | 0.065 | 0.0625 | 0.0625 | 0.3175 |
No log | 6.0 | 100 | 1.5493 | 0.615 | 0.08 | 0.1125 | 0.0625 | 0.0675 | 0.0775 | 0.0625 | 0.4275 |
No log | 6.96 | 116 | 1.3915 | 0.6275 | 0.075 | 0.1125 | 0.0625 | 0.065 | 0.115 | 0.0625 | 0.49 |
No log | 7.98 | 133 | 1.1837 | 0.695 | 0.0725 | 0.1125 | 0.0625 | 0.09 | 0.12 | 0.0625 | 0.58 |
No log | 9.0 | 150 | 1.0780 | 0.715 | 0.0725 | 0.1125 | 0.0675 | 0.105 | 0.1625 | 0.0625 | 0.6425 |
No log | 9.96 | 166 | 0.9851 | 0.75 | 0.075 | 0.1125 | 0.085 | 0.1275 | 0.1825 | 0.0625 | 0.67 |
No log | 10.98 | 183 | 0.9633 | 0.7175 | 0.0775 | 0.1125 | 0.1025 | 0.155 | 0.2075 | 0.0625 | 0.685 |
No log | 12.0 | 200 | 0.9930 | 0.7225 | 0.08 | 0.105 | 0.12 | 0.2175 | 0.2275 | 0.0625 | 0.7125 |
No log | 12.96 | 216 | 0.9389 | 0.75 | 0.08 | 0.1075 | 0.12 | 0.3075 | 0.3225 | 0.0675 | 0.73 |
No log | 13.98 | 233 | 0.9902 | 0.735 | 0.08 | 0.095 | 0.1475 | 0.3675 | 0.3925 | 0.0975 | 0.715 |
No log | 15.0 | 250 | 0.9248 | 0.765 | 0.08 | 0.0875 | 0.1725 | 0.425 | 0.445 | 0.115 | 0.7625 |
No log | 15.96 | 266 | 0.9750 | 0.7425 | 0.0825 | 0.08 | 0.2425 | 0.49 | 0.55 | 0.1175 | 0.7325 |
No log | 16.98 | 283 | 0.9921 | 0.7425 | 0.0775 | 0.0775 | 0.2775 | 0.5225 | 0.56 | 0.1375 | 0.73 |
No log | 18.0 | 300 | 0.9683 | 0.7775 | 0.08 | 0.075 | 0.355 | 0.555 | 0.6075 | 0.2375 | 0.78 |
No log | 18.96 | 316 | 1.0880 | 0.73 | 0.0825 | 0.095 | 0.4225 | 0.56 | 0.6325 | 0.47 | 0.735 |
No log | 19.98 | 333 | 1.1014 | 0.7575 | 0.0775 | 0.105 | 0.5125 | 0.5925 | 0.68 | 0.715 | 0.7525 |
No log | 21.0 | 350 | 1.1023 | 0.7575 | 0.0775 | 0.1175 | 0.5475 | 0.6125 | 0.69 | 0.7375 | 0.7475 |
No log | 21.96 | 366 | 1.1588 | 0.755 | 0.0725 | 0.125 | 0.5875 | 0.6275 | 0.685 | 0.735 | 0.75 |
No log | 22.98 | 383 | 1.1741 | 0.76 | 0.08 | 0.13 | 0.59 | 0.655 | 0.6875 | 0.75 | 0.755 |
No log | 24.0 | 400 | 1.2203 | 0.7575 | 0.08 | 0.14 | 0.6075 | 0.6625 | 0.6925 | 0.7525 | 0.76 |
No log | 24.96 | 416 | 1.2219 | 0.7525 | 0.075 | 0.1525 | 0.63 | 0.675 | 0.705 | 0.7575 | 0.755 |
No log | 25.98 | 433 | 1.2819 | 0.7575 | 0.0725 | 0.17 | 0.625 | 0.675 | 0.7 | 0.7575 | 0.76 |
No log | 27.0 | 450 | 1.3932 | 0.7425 | 0.06 | 0.185 | 0.6425 | 0.6725 | 0.68 | 0.7475 | 0.74 |
No log | 27.96 | 466 | 1.3149 | 0.76 | 0.055 | 0.1925 | 0.655 | 0.695 | 0.6925 | 0.755 | 0.76 |
No log | 28.98 | 483 | 1.3421 | 0.7625 | 0.0575 | 0.2275 | 0.65 | 0.6975 | 0.6875 | 0.76 | 0.76 |
1.4389 | 30.0 | 500 | 1.3388 | 0.76 | 0.055 | 0.2625 | 0.68 | 0.7175 | 0.705 | 0.765 | 0.76 |
1.4389 | 30.96 | 516 | 1.4119 | 0.735 | 0.055 | 0.2975 | 0.675 | 0.715 | 0.7125 | 0.735 | 0.735 |
1.4389 | 31.98 | 533 | 1.4079 | 0.7525 | 0.0525 | 0.3575 | 0.695 | 0.71 | 0.715 | 0.7575 | 0.7475 |
1.4389 | 33.0 | 550 | 1.4316 | 0.76 | 0.0525 | 0.3975 | 0.7 | 0.72 | 0.7225 | 0.7575 | 0.76 |
1.4389 | 33.96 | 566 | 1.4783 | 0.7525 | 0.05 | 0.4325 | 0.6975 | 0.7175 | 0.705 | 0.745 | 0.755 |
1.4389 | 34.98 | 583 | 1.4989 | 0.755 | 0.05 | 0.465 | 0.7075 | 0.72 | 0.7125 | 0.7475 | 0.7575 |
1.4389 | 36.0 | 600 | 1.5397 | 0.75 | 0.0525 | 0.4875 | 0.7075 | 0.725 | 0.715 | 0.745 | 0.7525 |
1.4389 | 36.96 | 616 | 1.5462 | 0.7475 | 0.05 | 0.5 | 0.7025 | 0.72 | 0.715 | 0.745 | 0.7425 |
1.4389 | 37.98 | 633 | 1.6063 | 0.74 | 0.0575 | 0.53 | 0.695 | 0.715 | 0.6975 | 0.7375 | 0.7375 |
1.4389 | 39.0 | 650 | 1.6784 | 0.7225 | 0.0525 | 0.535 | 0.7025 | 0.715 | 0.715 | 0.725 | 0.7225 |
1.4389 | 39.96 | 666 | 1.6285 | 0.735 | 0.055 | 0.5325 | 0.71 | 0.7225 | 0.715 | 0.7325 | 0.7325 |
1.4389 | 40.98 | 683 | 1.6233 | 0.7375 | 0.0525 | 0.55 | 0.705 | 0.7125 | 0.7 | 0.7325 | 0.735 |
1.4389 | 42.0 | 700 | 1.6116 | 0.7375 | 0.0525 | 0.5575 | 0.7025 | 0.7275 | 0.7175 | 0.7425 | 0.74 |
1.4389 | 42.96 | 716 | 1.7073 | 0.735 | 0.0525 | 0.5575 | 0.7025 | 0.7125 | 0.7075 | 0.73 | 0.7375 |
1.4389 | 43.98 | 733 | 1.7029 | 0.73 | 0.055 | 0.565 | 0.7025 | 0.715 | 0.71 | 0.7325 | 0.73 |
1.4389 | 45.0 | 750 | 1.7378 | 0.7375 | 0.055 | 0.595 | 0.6925 | 0.7075 | 0.6975 | 0.73 | 0.735 |
1.4389 | 45.96 | 766 | 1.7340 | 0.735 | 0.0525 | 0.6 | 0.7 | 0.7125 | 0.695 | 0.735 | 0.735 |
1.4389 | 46.98 | 783 | 1.7457 | 0.725 | 0.0525 | 0.615 | 0.7 | 0.71 | 0.71 | 0.725 | 0.7275 |
1.4389 | 48.0 | 800 | 1.7585 | 0.735 | 0.055 | 0.625 | 0.7075 | 0.71 | 0.7025 | 0.7375 | 0.7325 |
1.4389 | 48.96 | 816 | 1.7471 | 0.73 | 0.055 | 0.6325 | 0.7 | 0.7175 | 0.705 | 0.73 | 0.73 |
1.4389 | 49.98 | 833 | 1.7883 | 0.7275 | 0.055 | 0.6375 | 0.7075 | 0.7075 | 0.7075 | 0.7275 | 0.7325 |
1.4389 | 51.0 | 850 | 1.7675 | 0.7375 | 0.0575 | 0.65 | 0.7075 | 0.7125 | 0.705 | 0.7375 | 0.74 |
1.4389 | 51.96 | 866 | 1.7772 | 0.7325 | 0.0525 | 0.6475 | 0.7075 | 0.715 | 0.7075 | 0.725 | 0.73 |
1.4389 | 52.98 | 883 | 1.7676 | 0.735 | 0.0575 | 0.6475 | 0.7075 | 0.715 | 0.7 | 0.73 | 0.735 |
1.4389 | 54.0 | 900 | 1.7960 | 0.73 | 0.0575 | 0.65 | 0.7125 | 0.7125 | 0.71 | 0.7225 | 0.7325 |
1.4389 | 54.96 | 916 | 1.7900 | 0.7375 | 0.0575 | 0.65 | 0.71 | 0.7075 | 0.71 | 0.735 | 0.7425 |
1.4389 | 55.98 | 933 | 1.7869 | 0.7275 | 0.0575 | 0.6525 | 0.7025 | 0.7175 | 0.705 | 0.7275 | 0.73 |
1.4389 | 57.0 | 950 | 1.7876 | 0.7325 | 0.0575 | 0.6525 | 0.7075 | 0.7075 | 0.71 | 0.7325 | 0.735 |
1.4389 | 57.6 | 960 | 1.7887 | 0.7325 | 0.0575 | 0.6525 | 0.7075 | 0.7075 | 0.7075 | 0.7325 | 0.7375 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3