<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
flwr-ViT
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 1.5345
- Validation Loss: 1.5286
- Train Accuracy: 0.6574
- Epoch: 3
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 15, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
1.5388 | 1.5286 | 0.6574 | 0 |
1.5339 | 1.5286 | 0.6574 | 1 |
1.5344 | 1.5286 | 0.6574 | 2 |
1.5345 | 1.5286 | 0.6574 | 3 |
Framework versions
- Transformers 4.33.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3