SOTA Entity Recognition English Foundation Model by NuMind 🔥
This model provides the best embedding for the Entity Recognition task in English.
Checkout other models by NuMind:
- SOTA Multilingual Entity Recognition Foundation Model: link
- SOTA Sentiment Analysis Foundation Model: English, Multilingual
About
Roberta-base fine-tuned on an artificially annotated subset of C4.
Metrics:
Read more about evaluation protocol & datasets in our blog post
Model | F1 macro |
---|---|
RoBERTa-base | 0.7129 |
ours | 0.7500 |
ours + two emb | 0.7686 |
Usage
Embeddings can be used out of the box or fine-tuned on specific datasets.
Get embeddings:
import torch
import transformers
model = transformers.AutoModel.from_pretrained(
'numind/entity-recognition-general-sota-v1',
output_hidden_states=True
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
'numind/entity-recognition-general-sota-v1'
)
text = [
"NuMind is an AI company based in Paris and USA.",
"See other models from us on https://huggingface.co/numind"
]
encoded_input = tokenizer(
text,
return_tensors='pt',
padding=True,
truncation=True
)
output = model(**encoded_input)
# for better quality
emb = torch.cat(
(output.hidden_states[-1], output.hidden_states[-7]),
dim=2
)
# for better speed
# emb = output.hidden_states[-1]