<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->
whisper_4_with_init_sun_char_0110
This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 1.0328
- Train Accuracy: 0.0693
- Train Wermet: 0.9290
- Validation Loss: 2.3128
- Validation Accuracy: 0.0317
- Validation Wermet: 2.3269
- Epoch: 109
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
---|---|---|---|---|---|---|
3.2071 | 0.0313 | 0.1237 | 2.8546 | 0.0225 | 0.1109 | 0 |
3.0365 | 0.0325 | 0.0375 | 2.8115 | 0.0228 | 0.1215 | 1 |
3.0162 | 0.0326 | 0.0484 | 2.7884 | 0.0231 | 0.1318 | 2 |
3.0042 | 0.0327 | 0.0555 | 2.7853 | 0.0233 | 0.1393 | 3 |
2.9934 | 0.0328 | 0.0614 | 2.7657 | 0.0232 | 0.1273 | 4 |
2.9858 | 0.0329 | 0.0654 | 2.7542 | 0.0234 | 0.1073 | 5 |
2.9735 | 0.0330 | 0.0673 | 2.7367 | 0.0234 | 0.1414 | 6 |
2.9574 | 0.0332 | 0.0704 | 2.6961 | 0.0240 | 0.1429 | 7 |
2.9320 | 0.0335 | 0.0723 | 2.6652 | 0.0239 | 0.0990 | 8 |
2.8976 | 0.0339 | 0.0729 | 2.5997 | 0.0245 | 0.0944 | 9 |
2.8460 | 0.0343 | 0.0728 | 2.5378 | 0.0248 | 0.1435 | 10 |
2.7781 | 0.0347 | 0.0741 | 2.4355 | 0.0254 | 0.1372 | 11 |
2.7083 | 0.0352 | 0.0747 | 2.5163 | 0.0248 | 0.0987 | 12 |
2.6445 | 0.0356 | 0.0720 | 2.2997 | 0.0261 | 0.1484 | 13 |
2.5838 | 0.0360 | 0.0724 | 2.2386 | 0.0266 | 0.1419 | 14 |
2.5294 | 0.0363 | 0.0721 | 2.1855 | 0.0269 | 0.1289 | 15 |
2.4760 | 0.0367 | 0.0711 | 2.1682 | 0.0271 | 0.1214 | 16 |
2.4339 | 0.0370 | 0.0698 | 2.1018 | 0.0273 | 0.1264 | 17 |
2.3867 | 0.0373 | 0.0684 | 2.0647 | 0.0275 | 0.1403 | 18 |
2.3528 | 0.0376 | 0.0669 | 2.0705 | 0.0275 | 0.1089 | 19 |
2.3145 | 0.0379 | 0.0658 | 2.0179 | 0.0280 | 0.1209 | 20 |
2.2765 | 0.0382 | 0.0654 | 2.0182 | 0.0279 | 0.1023 | 21 |
2.2415 | 0.0385 | 0.0650 | 1.9558 | 0.0284 | 0.1523 | 22 |
2.2102 | 0.0388 | 0.0643 | 1.9395 | 0.0285 | 0.1123 | 23 |
2.1717 | 0.0392 | 0.0635 | 1.9791 | 0.0282 | 0.0928 | 24 |
2.1457 | 0.0395 | 0.0626 | 1.8907 | 0.0291 | 0.1078 | 25 |
2.1159 | 0.0398 | 0.0633 | 1.8930 | 0.0290 | 0.1098 | 26 |
2.0892 | 0.0401 | 0.0638 | 1.8696 | 0.0292 | 0.1078 | 27 |
2.0609 | 0.0405 | 0.0659 | 1.8555 | 0.0296 | 0.1051 | 28 |
2.0342 | 0.0409 | 0.0639 | 1.8589 | 0.0293 | 0.1092 | 29 |
2.0044 | 0.0413 | 0.0653 | 1.8375 | 0.0299 | 0.1015 | 30 |
1.9831 | 0.0416 | 0.0649 | 1.7954 | 0.0302 | 0.1194 | 31 |
1.9535 | 0.0421 | 0.0689 | 1.7937 | 0.0302 | 0.1168 | 32 |
1.9290 | 0.0425 | 0.0706 | 1.8385 | 0.0299 | 0.1074 | 33 |
1.8933 | 0.0432 | 0.0682 | 1.8761 | 0.0295 | 0.1173 | 34 |
1.8724 | 0.0435 | 0.0752 | 1.7929 | 0.0304 | 0.1220 | 35 |
1.8407 | 0.0442 | 0.0760 | 1.7865 | 0.0306 | 0.1266 | 36 |
1.8179 | 0.0446 | 0.0832 | 1.8108 | 0.0304 | 0.1226 | 37 |
1.7977 | 0.0451 | 0.0888 | 1.8024 | 0.0306 | 0.1161 | 38 |
1.7846 | 0.0454 | 0.0855 | 1.8107 | 0.0305 | 0.1385 | 39 |
1.7516 | 0.0461 | 0.0922 | 1.8258 | 0.0307 | 0.1365 | 40 |
1.7358 | 0.0465 | 0.1070 | 1.8837 | 0.0302 | 0.1461 | 41 |
1.7036 | 0.0474 | 0.1106 | 1.8589 | 0.0306 | 0.1201 | 42 |
1.6779 | 0.0481 | 0.1052 | 1.8831 | 0.0305 | 0.1755 | 43 |
1.6539 | 0.0487 | 0.1192 | 1.8249 | 0.0309 | 0.1901 | 44 |
1.6500 | 0.0488 | 0.1149 | 1.8435 | 0.0310 | 0.1313 | 45 |
1.6401 | 0.0490 | 0.1468 | 1.8509 | 0.0310 | 0.1597 | 46 |
1.6232 | 0.0495 | 0.1443 | 1.8573 | 0.0310 | 0.1588 | 47 |
1.5947 | 0.0503 | 0.1315 | 1.8350 | 0.0311 | 0.1476 | 48 |
1.5659 | 0.0512 | 0.1890 | 1.8934 | 0.0310 | 0.1507 | 49 |
1.5409 | 0.0521 | 0.1410 | 1.9782 | 0.0299 | 0.1663 | 50 |
1.5417 | 0.0520 | 0.1805 | 1.9223 | 0.0309 | 0.2287 | 51 |
1.5330 | 0.0522 | 0.1907 | 1.9174 | 0.0313 | 0.2481 | 52 |
1.5182 | 0.0527 | 0.1963 | 1.9254 | 0.0312 | 0.1440 | 53 |
1.5008 | 0.0532 | 0.2386 | 1.9368 | 0.0309 | 0.2045 | 54 |
1.4700 | 0.0543 | 0.2347 | 1.9171 | 0.0310 | 0.3189 | 55 |
1.4517 | 0.0549 | 0.2159 | 1.9880 | 0.0308 | 0.4000 | 56 |
1.4421 | 0.0553 | 0.2616 | 1.9647 | 0.0310 | 0.3311 | 57 |
1.4393 | 0.0552 | 0.2959 | 1.9191 | 0.0314 | 0.3403 | 58 |
1.4163 | 0.0560 | 0.3296 | 2.0068 | 0.0313 | 0.3711 | 59 |
1.4174 | 0.0559 | 0.3499 | 2.0338 | 0.0310 | 0.2981 | 60 |
1.4112 | 0.0561 | 0.3553 | 2.0262 | 0.0312 | 0.3595 | 61 |
1.3840 | 0.0572 | 0.4110 | 1.9913 | 0.0313 | 0.2975 | 62 |
1.3662 | 0.0578 | 0.3471 | 2.0969 | 0.0307 | 0.2794 | 63 |
1.3596 | 0.0579 | 0.3211 | 2.0164 | 0.0314 | 0.9982 | 64 |
1.3819 | 0.0571 | 0.3542 | 1.9052 | 0.0315 | 0.9802 | 65 |
1.3823 | 0.0569 | 0.3757 | 1.9371 | 0.0315 | 1.0860 | 66 |
1.3364 | 0.0587 | 0.4048 | 2.0912 | 0.0311 | 0.2807 | 67 |
1.3494 | 0.0582 | 0.3723 | 1.9475 | 0.0317 | 0.3295 | 68 |
1.3321 | 0.0587 | 0.3546 | 2.1066 | 0.0314 | 0.6181 | 69 |
1.3198 | 0.0592 | 0.4076 | 2.0759 | 0.0314 | 0.4974 | 70 |
1.2896 | 0.0603 | 0.4556 | 1.9717 | 0.0316 | 0.7519 | 71 |
1.2842 | 0.0604 | 0.5363 | 2.0598 | 0.0315 | 0.5596 | 72 |
1.2841 | 0.0604 | 0.5000 | 1.9914 | 0.0314 | 0.5531 | 73 |
1.2803 | 0.0606 | 0.5457 | 2.0848 | 0.0316 | 0.9665 | 74 |
1.2412 | 0.0620 | 0.5956 | 2.2020 | 0.0307 | 0.9376 | 75 |
1.2320 | 0.0624 | 0.5726 | 2.2278 | 0.0308 | 1.5467 | 76 |
1.2235 | 0.0626 | 0.7086 | 2.1929 | 0.0314 | 0.5619 | 77 |
1.2520 | 0.0614 | 0.7158 | 2.1414 | 0.0315 | 0.8414 | 78 |
1.2306 | 0.0621 | 0.7386 | 2.2487 | 0.0313 | 0.8498 | 79 |
1.2182 | 0.0627 | 0.6691 | 2.0785 | 0.0317 | 1.2870 | 80 |
1.2080 | 0.0630 | 0.7715 | 2.2775 | 0.0310 | 1.6700 | 81 |
1.2217 | 0.0624 | 0.7984 | 2.1358 | 0.0314 | 2.0753 | 82 |
1.2117 | 0.0628 | 0.8299 | 2.2871 | 0.0305 | 1.4698 | 83 |
1.1786 | 0.0642 | 0.6979 | 2.2602 | 0.0315 | 1.6544 | 84 |
1.1776 | 0.0643 | 0.7391 | 2.2246 | 0.0314 | 1.0500 | 85 |
1.1613 | 0.0651 | 0.7607 | 2.2078 | 0.0316 | 0.9168 | 86 |
1.1323 | 0.0660 | 0.7046 | 2.3419 | 0.0315 | 0.8306 | 87 |
1.1172 | 0.0667 | 0.7140 | 2.3248 | 0.0310 | 1.3227 | 88 |
1.1247 | 0.0664 | 0.7725 | 2.1606 | 0.0315 | 0.8301 | 89 |
1.1395 | 0.0656 | 0.7530 | 2.3058 | 0.0313 | 2.6814 | 90 |
1.1289 | 0.0660 | 0.7383 | 2.4022 | 0.0304 | 1.8903 | 91 |
1.1743 | 0.0644 | 0.9273 | 2.1835 | 0.0312 | 0.8217 | 92 |
1.1036 | 0.0670 | 0.8103 | 2.3628 | 0.0311 | 1.3153 | 93 |
1.1133 | 0.0666 | 0.7860 | 2.3550 | 0.0315 | 1.3283 | 94 |
1.0711 | 0.0684 | 0.7560 | 2.3424 | 0.0315 | 2.1423 | 95 |
1.1228 | 0.0661 | 0.7723 | 2.2479 | 0.0317 | 1.5237 | 96 |
1.1049 | 0.0667 | 0.9085 | 2.3417 | 0.0312 | 2.6453 | 97 |
1.0797 | 0.0676 | 0.8421 | 2.3354 | 0.0317 | 2.0662 | 98 |
1.0776 | 0.0680 | 0.7230 | 2.3114 | 0.0317 | 1.3388 | 99 |
1.0559 | 0.0687 | 0.8900 | 2.3716 | 0.0318 | 1.6763 | 100 |
1.0622 | 0.0684 | 0.9969 | 2.4114 | 0.0312 | 2.0936 | 101 |
1.0435 | 0.0691 | 0.8912 | 2.3537 | 0.0311 | 2.5063 | 102 |
1.0366 | 0.0693 | 0.8660 | 2.5696 | 0.0314 | 1.4389 | 103 |
1.0518 | 0.0686 | 0.8685 | 2.3919 | 0.0317 | 1.3336 | 104 |
1.0613 | 0.0683 | 0.9326 | 2.3883 | 0.0311 | 4.2511 | 105 |
1.0174 | 0.0703 | 0.8783 | 2.6616 | 0.0311 | 1.6916 | 106 |
1.0230 | 0.0700 | 0.8538 | 2.5266 | 0.0315 | 1.9511 | 107 |
0.9943 | 0.0712 | 0.8647 | 2.5667 | 0.0316 | 2.0559 | 108 |
1.0328 | 0.0693 | 0.9290 | 2.3128 | 0.0317 | 2.3269 | 109 |
Framework versions
- Transformers 4.34.0.dev0
- TensorFlow 2.13.0
- Tokenizers 0.13.3