generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

asd_pron_w2v_clf_acc_balanced_xlsr_loss

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.98 46 1.0989 0.3283
No log 1.98 92 1.0973 0.3317
No log 2.98 138 1.1106 0.3767
No log 3.98 184 1.0131 0.5550
1.0474 4.98 230 0.7994 0.6500
1.0474 5.98 276 0.8775 0.6633
1.0474 6.98 322 0.8374 0.7017
1.0474 7.98 368 1.1736 0.6900
0.4029 8.98 414 1.7477 0.6467
0.4029 9.98 460 1.4440 0.6917
0.4029 10.98 506 1.7208 0.6783
0.4029 11.98 552 1.9574 0.5933
0.4029 12.98 598 1.9526 0.6467
0.1003 13.98 644 1.4302 0.7317
0.1003 14.98 690 1.4979 0.7417
0.1003 15.98 736 1.8135 0.7033
0.1003 16.98 782 1.4752 0.7533
0.0477 17.98 828 1.9857 0.6767
0.0477 18.98 874 2.2540 0.6900
0.0477 19.98 920 2.2338 0.6333
0.0477 20.98 966 1.7913 0.7483
0.0217 21.98 1012 1.9875 0.7200
0.0217 22.98 1058 2.0505 0.7150
0.0217 23.98 1104 2.0233 0.7150
0.0217 24.98 1150 2.5344 0.6700
0.0217 25.98 1196 1.8976 0.7233
0.0148 26.98 1242 2.2131 0.7083
0.0148 27.98 1288 2.4018 0.6817
0.0148 28.98 1334 2.3855 0.6933
0.0148 29.98 1380 2.4776 0.6967
0.0153 30.98 1426 2.3106 0.6983
0.0153 31.98 1472 2.5678 0.6567
0.0153 32.98 1518 2.3137 0.7100
0.0153 33.98 1564 2.4556 0.6867
0.007 34.98 1610 2.5237 0.6850
0.007 35.98 1656 2.2113 0.7283
0.007 36.98 1702 2.2821 0.7017
0.007 37.98 1748 2.4137 0.7033
0.007 38.98 1794 2.2340 0.7233
0.0079 39.98 1840 2.4221 0.6967
0.0079 40.98 1886 2.3444 0.7133
0.0079 41.98 1932 2.3962 0.7033
0.0079 42.98 1978 2.6801 0.6817
0.0062 43.98 2024 2.4529 0.7033
0.0062 44.98 2070 2.4129 0.7083
0.0062 45.98 2116 2.4010 0.7067
0.0062 46.98 2162 2.6413 0.6900
0.0032 47.98 2208 2.5771 0.6917
0.0032 48.98 2254 2.5157 0.6933
0.0032 49.98 2300 2.5054 0.6950

Framework versions