Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
在llama-2-13b上使用huangyt/FINETUNE3資料集進行訓練,總資料筆數約3w
Fine-Tuning Information
- GPU: RTX4090 (single core / 24564MiB)
- model: meta-llama/Llama-2-13b-hf
- dataset: huangyt/FINETUNE3 (共約3.3w筆訓練集)
- peft_type: LoRA
- lora_rank: 16
- lora_target: gate_proj, up_proj, down_proj
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 8
- learning_rate : 4e-4
- epoch: 1
- precision: bf16
- quantization: load_in_4bit
Fine-Tuning Detail
- train_loss: 0.579
- train_runtime: 4:6:11 (use deepspeed)
Evaluation
- 評估結果來自HuggingFaceH4/open_llm_leaderboard
- 與Llama-2-13b比較4種Benchmark,包含ARC、HellaSwag、MMLU、TruthfulQA
- P.S: 此分數暫時是使用本地所測的分數,後續會再改成HuggingFaceH4/open_llm_leaderboard提供的分數
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | 
|---|---|---|---|---|---|
| meta-llama/Llama-2-13b-hf | 56.9 | 58.11 | 80.97 | 54.34 | 34.17 | 
| meta-llama/Llama-2-13b-chat-hf | 59.93 | 59.04 | 81.94 | 54.64 | 44.12 | 
| CHIH-HUNG/llama-2-13b-FINETUNE3_3.3w | 58.9 | 58.95 | 82.38 | 54.56 | 39.73 | 
How to convert dataset to json
- 在load_dataset中輸入資料集名稱,並且在take中輸入要取前幾筆資料
- 觀察該資料集的欄位名稱,填入example欄位中(例如system_prompt、question、response)
- 最後指定json檔儲存位置 (json_filename)
import json
from datasets import load_dataset
# 讀取數據集,take可以取得該數據集前n筆資料
dataset = load_dataset("huangyt/FINETUNE3", split="train", streaming=True)
# 提取所需欄位並建立新的字典列表
extracted_data = []
for example in dataset:
    extracted_example = {
        "instruction": example["instruction"],
        "input": example["input"],
        "output": example["output"]
    }
    extracted_data.append(extracted_example)
# 指定 JSON 文件名稱
json_filename = "FINETUNE3.json"
# 寫入 JSON 文件
with open(json_filename, "w") as json_file:
    json.dump(extracted_data, json_file, indent=4)
print(f"數據已提取並保存為 {json_filename}")
 
       
      