<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-09-10_txt_vis_concat_gate
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9407
- Accuracy: 0.78
- Exit 0 Accuracy: 0.0625
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy |
---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6995 | 0.13 | 0.0625 |
No log | 1.98 | 33 | 2.5653 | 0.21 | 0.06 |
No log | 3.0 | 50 | 2.3927 | 0.2825 | 0.07 |
No log | 3.96 | 66 | 2.2103 | 0.345 | 0.075 |
No log | 4.98 | 83 | 2.0217 | 0.4525 | 0.065 |
No log | 6.0 | 100 | 1.8175 | 0.5325 | 0.06 |
No log | 6.96 | 116 | 1.6096 | 0.5875 | 0.0625 |
No log | 7.98 | 133 | 1.4160 | 0.6375 | 0.0625 |
No log | 9.0 | 150 | 1.3283 | 0.6575 | 0.0625 |
No log | 9.96 | 166 | 1.2253 | 0.7 | 0.0625 |
No log | 10.98 | 183 | 1.1531 | 0.7225 | 0.0625 |
No log | 12.0 | 200 | 1.0661 | 0.7375 | 0.0625 |
No log | 12.96 | 216 | 1.0565 | 0.73 | 0.0625 |
No log | 13.98 | 233 | 1.0281 | 0.73 | 0.0625 |
No log | 15.0 | 250 | 1.0459 | 0.7275 | 0.0625 |
No log | 15.96 | 266 | 0.9802 | 0.75 | 0.0625 |
No log | 16.98 | 283 | 0.9665 | 0.7525 | 0.0625 |
No log | 18.0 | 300 | 0.9655 | 0.7475 | 0.0625 |
No log | 18.96 | 316 | 0.9463 | 0.7675 | 0.0625 |
No log | 19.98 | 333 | 0.9392 | 0.765 | 0.0625 |
No log | 21.0 | 350 | 0.9768 | 0.75 | 0.0625 |
No log | 21.96 | 366 | 0.9973 | 0.7525 | 0.0625 |
No log | 22.98 | 383 | 0.9660 | 0.765 | 0.0625 |
No log | 24.0 | 400 | 1.0065 | 0.7475 | 0.0625 |
No log | 24.96 | 416 | 0.9077 | 0.7825 | 0.0625 |
No log | 25.98 | 433 | 0.9568 | 0.775 | 0.0625 |
No log | 27.0 | 450 | 0.9389 | 0.775 | 0.0625 |
No log | 27.96 | 466 | 0.9266 | 0.78 | 0.0625 |
No log | 28.98 | 483 | 0.9301 | 0.7825 | 0.0625 |
0.5845 | 30.0 | 500 | 0.9220 | 0.785 | 0.0625 |
0.5845 | 30.96 | 516 | 0.9563 | 0.77 | 0.0625 |
0.5845 | 31.98 | 533 | 0.9272 | 0.785 | 0.0625 |
0.5845 | 33.0 | 550 | 0.9430 | 0.7775 | 0.0625 |
0.5845 | 33.96 | 566 | 0.9525 | 0.78 | 0.0625 |
0.5845 | 34.98 | 583 | 0.9190 | 0.7975 | 0.0625 |
0.5845 | 36.0 | 600 | 0.9416 | 0.765 | 0.0625 |
0.5845 | 36.96 | 616 | 0.9286 | 0.7825 | 0.0625 |
0.5845 | 37.98 | 633 | 0.9411 | 0.775 | 0.0625 |
0.5845 | 39.0 | 650 | 0.9468 | 0.77 | 0.0625 |
0.5845 | 39.96 | 666 | 0.9305 | 0.7825 | 0.0625 |
0.5845 | 40.98 | 683 | 0.9428 | 0.775 | 0.0625 |
0.5845 | 42.0 | 700 | 0.9484 | 0.78 | 0.0625 |
0.5845 | 42.96 | 716 | 0.9411 | 0.7825 | 0.0625 |
0.5845 | 43.98 | 733 | 0.9564 | 0.775 | 0.0625 |
0.5845 | 45.0 | 750 | 0.9293 | 0.785 | 0.0625 |
0.5845 | 45.96 | 766 | 0.9578 | 0.78 | 0.0625 |
0.5845 | 46.98 | 783 | 0.9377 | 0.79 | 0.0625 |
0.5845 | 48.0 | 800 | 0.9417 | 0.78 | 0.0625 |
0.5845 | 48.96 | 816 | 0.9495 | 0.7825 | 0.0625 |
0.5845 | 49.98 | 833 | 0.9401 | 0.7875 | 0.0625 |
0.5845 | 51.0 | 850 | 0.9458 | 0.7875 | 0.0625 |
0.5845 | 51.96 | 866 | 0.9468 | 0.7875 | 0.0625 |
0.5845 | 52.98 | 883 | 0.9341 | 0.79 | 0.0625 |
0.5845 | 54.0 | 900 | 0.9344 | 0.7875 | 0.0625 |
0.5845 | 54.96 | 916 | 0.9350 | 0.785 | 0.0625 |
0.5845 | 55.98 | 933 | 0.9391 | 0.78 | 0.0625 |
0.5845 | 57.0 | 950 | 0.9408 | 0.78 | 0.0625 |
0.5845 | 57.6 | 960 | 0.9407 | 0.78 | 0.0625 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3