<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-09-10_txt_vis_concat_9_10_11_12_gate
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8876
- Accuracy: 0.7975
- Exit 0 Accuracy: 0.0625
- Exit 1 Accuracy: 0.0625
- Exit 2 Accuracy: 0.0625
- Exit 3 Accuracy: 0.0625
- Exit 4 Accuracy: 0.0625
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy |
---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6594 | 0.17 | 0.065 | 0.0625 | 0.0625 | 0.0625 | 0.05 |
No log | 1.98 | 33 | 2.5171 | 0.2475 | 0.0725 | 0.0625 | 0.0625 | 0.0625 | 0.0725 |
No log | 3.0 | 50 | 2.3322 | 0.31 | 0.065 | 0.0625 | 0.0625 | 0.0625 | 0.0775 |
No log | 3.96 | 66 | 2.1362 | 0.37 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
No log | 4.98 | 83 | 1.8938 | 0.5225 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.07 |
No log | 6.0 | 100 | 1.6266 | 0.6425 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 6.96 | 116 | 1.3983 | 0.6775 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0775 |
No log | 7.98 | 133 | 1.2573 | 0.7175 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 9.0 | 150 | 1.1421 | 0.7425 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0825 |
No log | 9.96 | 166 | 1.0503 | 0.765 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 10.98 | 183 | 0.9980 | 0.7725 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 12.0 | 200 | 0.9884 | 0.7475 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.075 |
No log | 12.96 | 216 | 0.9560 | 0.76 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0675 |
No log | 13.98 | 233 | 0.9037 | 0.785 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 15.0 | 250 | 0.9221 | 0.7825 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
No log | 15.96 | 266 | 0.9096 | 0.775 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0675 |
No log | 16.98 | 283 | 0.9004 | 0.7775 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0675 |
No log | 18.0 | 300 | 0.9163 | 0.7825 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 18.96 | 316 | 0.8849 | 0.7825 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 19.98 | 333 | 0.8734 | 0.795 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.07 |
No log | 21.0 | 350 | 0.8764 | 0.7925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 21.96 | 366 | 0.8937 | 0.775 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 22.98 | 383 | 0.8677 | 0.795 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 24.0 | 400 | 0.8877 | 0.785 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0675 |
No log | 24.96 | 416 | 0.8833 | 0.7825 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 25.98 | 433 | 0.8721 | 0.7875 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0675 |
No log | 27.0 | 450 | 0.8774 | 0.79 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
No log | 27.96 | 466 | 0.8845 | 0.7925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0675 |
No log | 28.98 | 483 | 0.8844 | 0.79 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.07 |
0.5662 | 30.0 | 500 | 0.8830 | 0.7875 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
0.5662 | 30.96 | 516 | 0.8860 | 0.7925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
0.5662 | 31.98 | 533 | 0.8786 | 0.795 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
0.5662 | 33.0 | 550 | 0.8877 | 0.7925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 33.96 | 566 | 0.8878 | 0.7875 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
0.5662 | 34.98 | 583 | 0.8792 | 0.7925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
0.5662 | 36.0 | 600 | 0.8824 | 0.785 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
0.5662 | 36.96 | 616 | 0.8836 | 0.79 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 37.98 | 633 | 0.8752 | 0.7975 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 39.0 | 650 | 0.8826 | 0.7975 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
0.5662 | 39.96 | 666 | 0.8881 | 0.7975 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 |
0.5662 | 40.98 | 683 | 0.8860 | 0.79 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 42.0 | 700 | 0.8825 | 0.7975 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 42.96 | 716 | 0.8868 | 0.795 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 43.98 | 733 | 0.8873 | 0.8 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.06 |
0.5662 | 45.0 | 750 | 0.8905 | 0.795 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 45.96 | 766 | 0.8873 | 0.795 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 46.98 | 783 | 0.8883 | 0.7975 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 48.0 | 800 | 0.8896 | 0.795 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 48.96 | 816 | 0.8873 | 0.795 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 49.98 | 833 | 0.8851 | 0.795 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 51.0 | 850 | 0.8845 | 0.8 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 51.96 | 866 | 0.8861 | 0.7975 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 52.98 | 883 | 0.8867 | 0.7975 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 54.0 | 900 | 0.8887 | 0.8 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 54.96 | 916 | 0.8874 | 0.8 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 55.98 | 933 | 0.8867 | 0.7975 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 57.0 | 950 | 0.8875 | 0.7975 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
0.5662 | 57.6 | 960 | 0.8876 | 0.7975 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3