<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_AugmentedTransfer_EN
This model is a fine-tuned version of StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN on the CRAFT dataset. It achieves the following results on the evaluation set:
- Loss: 0.2308
- Precision: 0.8366
- Recall: 0.8513
- F1: 0.8439
- Accuracy: 0.9681
Model description
This model performs Named Entity Recognition for 6 entity tags: Sequence, Cell, Protein, Gene, Taxon, and Chemical from the CRAFT(Colorado Richly Annotated Full Text) Corpus in Spanish and English. Entity tags have been normalized and replaced from the original three letter code to a full name e.g. B-Protein, I-Chemical. This model is trained on augmented data created using Entity Replacement. 20% of the entities were replaced using a list of entities for each entity tag obtained from the official ontologies for each entity class. Both datasets (original, augmented) were concatenated. To improve F1 score the transfer learning was completed in two steps. Using [StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN](https://huggingface.co/StivenLancheros/roberta-base-biomedical-clinical-es-finetuned-ner-CRAFT_Augmented_EN as a base model, I finetuned once more on the original CRAFT dataset in English.
Biobert --> Augmented CRAFT --> CRAFT
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0129 | 1.0 | 1360 | 0.2119 | 0.8404 | 0.8364 | 0.8384 | 0.9666 |
0.0072 | 2.0 | 2720 | 0.2132 | 0.8173 | 0.8583 | 0.8373 | 0.9662 |
0.0042 | 3.0 | 4080 | 0.2180 | 0.8410 | 0.8515 | 0.8462 | 0.9686 |
0.0019 | 4.0 | 5440 | 0.2308 | 0.8366 | 0.8513 | 0.8439 | 0.9681 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6