BL-pythia-31m-simpleRW-lite-2048-scratch
This model is a fine-tuned version of EleutherAI/pythia-31m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.7136
 - Accuracy: 0.2662
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
2040 ***** eval metrics *****
2041   epoch                   =        3.0
2042   eval_accuracy           =     0.2668
2043   eval_loss               =     4.7076
2044   eval_runtime            = 0:00:21.04
2045   eval_samples            =        500
2046   eval_samples_per_second =     23.759
2047   eval_steps_per_second   =      11.88
2048   perplexity              =   110.7897
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
 - train_batch_size: 2
 - eval_batch_size: 2
 - seed: 80085
 - gradient_accumulation_steps: 64
 - total_train_batch_size: 128
 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-07
 - lr_scheduler_type: inverse_sqrt
 - lr_scheduler_warmup_ratio: 0.05
 - num_epochs: 3.0
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 
|---|---|---|---|---|
| 7.0159 | 0.13 | 100 | 7.1022 | 0.1180 | 
| 6.2257 | 0.27 | 200 | 6.3526 | 0.1508 | 
| 5.8611 | 0.4 | 300 | 5.9888 | 0.1735 | 
| 5.5514 | 0.54 | 400 | 5.7552 | 0.1855 | 
| 5.3824 | 0.67 | 500 | 5.5883 | 0.1948 | 
| 5.344 | 0.81 | 600 | 5.4697 | 0.2017 | 
| 5.1925 | 0.94 | 700 | 5.3717 | 0.2073 | 
| 5.0814 | 1.08 | 800 | 5.2932 | 0.2121 | 
| 5.0865 | 1.21 | 900 | 5.2280 | 0.2162 | 
| 4.9602 | 1.35 | 1000 | 5.1672 | 0.2207 | 
| 4.957 | 1.48 | 1100 | 5.1144 | 0.2247 | 
| 4.8489 | 1.62 | 1200 | 5.0617 | 0.2299 | 
| 4.79 | 1.75 | 1300 | 5.0122 | 0.2349 | 
| 4.8005 | 1.89 | 1400 | 4.9637 | 0.2400 | 
| 4.7409 | 2.02 | 1500 | 4.9216 | 0.2448 | 
| 4.6674 | 2.16 | 1600 | 4.8815 | 0.2488 | 
| 4.6729 | 2.29 | 1700 | 4.8475 | 0.2526 | 
| 4.7071 | 2.43 | 1800 | 4.8156 | 0.2555 | 
| 4.4937 | 2.56 | 1900 | 4.7841 | 0.2588 | 
| 4.5153 | 2.7 | 2000 | 4.7573 | 0.2615 | 
| 4.5512 | 2.83 | 2100 | 4.7345 | 0.2637 | 
| 4.5153 | 2.96 | 2200 | 4.7136 | 0.2662 | 
Framework versions
- Transformers 4.34.0.dev0
 - Pytorch 2.2.0.dev20230915+cu118
 - Datasets 2.14.5
 - Tokenizers 0.13.3