<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
emotion_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5662
- Accuracy: 0.6
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 20 | 1.4518 | 0.5687 |
No log | 2.0 | 40 | 1.5669 | 0.5437 |
No log | 3.0 | 60 | 1.6466 | 0.5125 |
No log | 4.0 | 80 | 1.6751 | 0.5125 |
No log | 5.0 | 100 | 1.6191 | 0.55 |
No log | 6.0 | 120 | 1.6814 | 0.5437 |
No log | 7.0 | 140 | 1.7283 | 0.5687 |
No log | 8.0 | 160 | 1.5768 | 0.575 |
No log | 9.0 | 180 | 1.7247 | 0.525 |
No log | 10.0 | 200 | 1.6371 | 0.5563 |
No log | 11.0 | 220 | 1.7257 | 0.5312 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3