#PPO Agent Playing minetester-treechop_shaped-v0
This is a trained model of a PPO agent playing minetester-treechop_shaped-v0. The model was trained by using minetest-baselines.
Command to reproduce the training
python -m minetest_baselines.train --algo ppo --exp-name ppo_fixed_dtime_seed1 --seed 1 --capture-video --track --wandb-entity rkla --save-model --upload-model --hf-entity rkla --total-timesteps 1000 --num-envs 2
Hyperparameters
{'anneal_lr': True,
'batch_size': 256,
'capture_video': True,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'minetester-treechop_shaped-v0',
'exp_name': 'ppo_fixed_dtime_seed1',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'rkla',
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 64,
'norm_adv': True,
'num_envs': 2,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 3,
'save_model': True,
'seed': 1,
'target_kl': None,
'torch_deterministic': True,
'total_timesteps': 1000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'video_frequency': 100,
'wandb_entity': 'rkla',
'wandb_project_name': 'minetest-baselines'}