<div style="width: 100%;"> <img src="http://x-pai.algolet.com/bot/img/logo_core.png" alt="TigerBot" style="width: 20%; display: block; margin: auto;"> </div> <p align="center"> <font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font> </p> <p align="center"> 🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a> </p>
This is a 4-bit EXL2 version of the Tigerbot 70b chat.
It was quantized to 4bit using: https://github.com/turboderp/exllamav2
How to download and use this model in github: https://github.com/TigerResearch/TigerBot
Here are commands to clone the TigerBot and install.
conda create --name tigerbot python=3.8
conda activate tigerbot
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
git clone https://github.com/TigerResearch/TigerBot
cd TigerBot
pip install -r requirements.txt
Inference with command line interface
infer with exllamav2
# install exllamav2
git clone https://github.com/turboderp/exllamav2
cd exllamav2
pip install -r requirements.txt
# infer command
CUDA_VISIBLE_DEVICES=0 python other_infer/exllamav2_hf_infer.py --model_path TigerResearch/tigerbot-70b-chat-4bit-exl2