automatic-speech-recognition wav_sub-P001 generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

em_ctc

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the WAV_SUB-P001 - TR dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.16 100 3.8990 1.0
No log 0.32 200 2.8678 1.0
No log 0.48 300 2.7795 1.0
No log 0.65 400 2.7316 1.0
4.389 0.81 500 2.6889 0.9784
4.389 0.97 600 3.2727 0.9784
4.389 1.13 700 2.7057 0.9784
4.389 1.29 800 2.8525 0.9964
4.389 1.45 900 2.6685 0.9968
2.5649 1.61 1000 2.7403 1.0
2.5649 1.78 1100 2.7790 1.0
2.5649 1.94 1200 2.8130 0.9786
2.5649 2.1 1300 2.8031 1.0
2.5649 2.26 1400 2.9683 1.0
2.5421 2.42 1500 2.9459 0.9784
2.5421 2.58 1600 2.7052 0.9784
2.5421 2.74 1700 2.7879 0.9786
2.5421 2.91 1800 2.7956 1.0
2.5421 3.07 1900 2.7760 0.9784
2.5357 3.23 2000 2.8594 0.9995
2.5357 3.39 2100 2.9048 0.9796
2.5357 3.55 2200 3.0098 0.9784
2.5357 3.71 2300 2.7079 0.9784
2.5357 3.87 2400 3.2403 1.0
2.5203 4.04 2500 3.0476 0.9784
2.5203 4.2 2600 2.8510 1.0
2.5203 4.36 2700 2.7907 0.9784
2.5203 4.52 2800 2.7486 0.9784
2.5203 4.68 2900 3.1701 1.0
2.5191 4.84 3000 2.9529 0.9784
2.5191 5.0 3100 3.1192 0.9650
2.5191 5.17 3200 2.8596 1.0
2.5191 5.33 3300 2.9193 1.0
2.5191 5.49 3400 3.0367 0.9784
2.5422 5.65 3500 2.9162 0.9784
2.5422 5.81 3600 3.0334 1.0
2.5422 5.97 3700 2.8514 0.9784
2.5422 6.13 3800 2.9654 1.0
2.5422 6.3 3900 3.2616 0.9784
2.5062 6.46 4000 3.3320 0.9793
2.5062 6.62 4100 2.7141 0.9784
2.5062 6.78 4200 3.2108 0.9784
2.5062 6.94 4300 3.0015 0.9784
2.5062 7.1 4400 3.0244 1.0
2.5114 7.26 4500 2.8742 0.9784
2.5114 7.43 4600 3.1471 0.9784
2.5114 7.59 4700 2.7006 0.9773
2.5114 7.75 4800 3.1189 1.0
2.5114 7.91 4900 3.1604 0.9784
2.5065 8.07 5000 2.9297 0.9784
2.5065 8.23 5100 3.0998 0.9784
2.5065 8.39 5200 2.8184 0.9843
2.5065 8.56 5300 2.7133 0.9861
2.5065 8.72 5400 2.7399 0.9811
2.4956 8.88 5500 2.7186 0.9889
2.4956 9.04 5600 2.9872 0.9955
2.4956 9.2 5700 3.0825 0.9993
2.4956 9.36 5800 3.0589 0.9855
2.4956 9.52 5900 2.8177 0.9784
2.4774 9.69 6000 2.8104 0.9993
2.4774 9.85 6100 2.9498 0.9796
2.4774 10.01 6200 3.0006 0.9784
2.4774 10.17 6300 2.8100 0.9784
2.4774 10.33 6400 3.1577 0.9786
2.4689 10.49 6500 2.7814 0.9977
2.4689 10.65 6600 2.7271 0.9836
2.4689 10.82 6700 2.8403 0.9784
2.4689 10.98 6800 2.7257 0.9998
2.4689 11.14 6900 2.6728 0.9898
2.486 11.3 7000 2.7348 0.9809
2.486 11.46 7100 2.7054 0.9982
2.486 11.62 7200 2.7254 0.9948
2.486 11.78 7300 2.7498 0.9891
2.486 11.95 7400 2.7076 0.9898
2.4616 12.11 7500 2.6398 0.9995
2.4616 12.27 7600 2.7626 0.9846
2.4616 12.43 7700 2.6804 0.9814
2.4616 12.59 7800 2.8212 0.9834
2.4616 12.75 7900 2.6535 0.9959
2.4573 12.91 8000 2.7547 0.9993
2.4573 13.08 8100 2.7253 0.9798
2.4573 13.24 8200 2.6851 0.9936
2.4573 13.4 8300 2.7627 0.9907
2.4573 13.56 8400 2.6607 0.9857
2.4487 13.72 8500 2.6645 0.9800
2.4487 13.88 8600 2.7558 0.9973
2.4487 14.04 8700 2.7665 0.9961
2.4487 14.21 8800 2.7697 0.9827
2.4487 14.37 8900 2.8531 0.9918
2.4416 14.53 9000 2.8974 0.9920
2.4416 14.69 9100 2.7308 0.9975
2.4416 14.85 9200 2.7919 0.9816
2.4416 15.01 9300 2.6605 0.9893
2.4416 15.17 9400 2.6058 0.9816
2.4405 15.33 9500 2.6366 0.9911
2.4405 15.5 9600 2.5653 0.9818
2.4405 15.66 9700 2.7026 0.9807
2.4405 15.82 9800 2.7358 0.9796
2.4405 15.98 9900 2.6954 0.9848
2.4352 16.14 10000 2.6610 0.9857
2.4352 16.3 10100 2.7686 0.9811
2.4352 16.46 10200 2.7758 0.9798
2.4352 16.63 10300 2.7515 0.9848
2.4352 16.79 10400 2.7264 0.9911
2.4354 16.95 10500 2.7039 0.9791
2.4354 17.11 10600 2.7580 0.9843
2.4354 17.27 10700 2.7187 0.9855
2.4354 17.43 10800 2.7545 0.9798
2.4354 17.59 10900 2.7452 0.9809
2.4321 17.76 11000 2.6804 0.9836
2.4321 17.92 11100 2.6586 0.9891
2.4321 18.08 11200 2.6805 0.9830
2.4321 18.24 11300 2.6626 0.9871
2.4321 18.4 11400 2.7002 0.9809
2.4193 18.56 11500 2.7054 0.9839
2.4193 18.72 11600 2.7171 0.9900
2.4193 18.89 11700 2.7122 0.9852
2.4193 19.05 11800 2.7058 0.9871
2.4193 19.21 11900 2.7004 0.9839
2.4276 19.37 12000 2.7250 0.9852
2.4276 19.53 12100 2.7126 0.9861
2.4276 19.69 12200 2.7388 0.9834
2.4276 19.85 12300 2.7311 0.9850

Framework versions