Unconditional icon generation using DDPM Diffusion
Image samples

Sample code for use in Google Colab
Install the necessary packages
!python3 -m pip install diffusers==0.21.* accelerate
Generate images using DDPM Pipeline
from matplotlib import pyplot as plt
from diffusers import DDPMPipeline
ddpm = DDPMPipeline.from_pretrained("mayur7garg/ddpm-fake-icons")
ddpm.to("cuda")
inference_image = ddpm(
batch_size = 36,
num_inference_steps = 1000
).images
plt.figure(figsize = (18, 18), dpi = 120)
for i, image in enumerate(inference_image):
plt.subplot(6, 6, i + 1)
plt.imshow(image)
plt.axis(False)
plt.tight_layout()
plt.show()