<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
V3_20230929-2-xlm-roberta-base-new
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.5469
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
4.4076 | 0.46 | 200 | 0.2641 | nan |
4.0232 | 0.91 | 400 | 0.3172 | nan |
3.9061 | 1.37 | 600 | 0.3025 | nan |
3.6669 | 1.82 | 800 | 0.3241 | 3.5105 |
3.5761 | 2.28 | 1000 | 0.3492 | 3.2617 |
3.4949 | 2.73 | 1200 | 0.3894 | nan |
3.3705 | 3.19 | 1400 | 0.4269 | nan |
3.3901 | 3.64 | 1600 | 0.4191 | 3.3508 |
3.1971 | 4.1 | 1800 | 0.3889 | nan |
3.1646 | 4.56 | 2000 | 0.4204 | 3.3370 |
2.9748 | 5.01 | 2200 | 0.4468 | 2.8025 |
3.0047 | 5.47 | 2400 | 0.4327 | 3.0098 |
2.9395 | 5.92 | 2600 | 0.4673 | 2.7967 |
2.8467 | 6.38 | 2800 | 0.4675 | nan |
2.7492 | 6.83 | 3000 | 0.4613 | 2.8956 |
2.802 | 7.29 | 3200 | 0.4766 | 2.5544 |
2.8111 | 7.74 | 3400 | 0.4925 | nan |
2.6549 | 8.2 | 3600 | 0.5013 | nan |
2.7367 | 8.66 | 3800 | 0.4842 | 2.7689 |
2.6375 | 9.11 | 4000 | 0.5303 | nan |
2.616 | 9.57 | 4200 | 0.5157 | 2.6867 |
2.711 | 10.02 | 4400 | 0.5357 | 2.2537 |
2.4239 | 10.48 | 4600 | 0.4976 | nan |
2.7012 | 10.93 | 4800 | 0.5105 | 2.4325 |
2.5152 | 11.39 | 5000 | 0.5372 | nan |
2.5798 | 11.85 | 5200 | 0.5320 | nan |
2.4845 | 12.3 | 5400 | 0.5553 | nan |
2.4842 | 12.76 | 5600 | 0.5206 | nan |
2.4412 | 13.21 | 5800 | 0.5398 | 2.3403 |
2.4967 | 13.67 | 6000 | 0.5285 | 2.2010 |
2.4451 | 14.12 | 6200 | 0.4803 | 2.5469 |
2.485 | 14.58 | 6400 | 0.5469 | nan |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3