generated_from_keras_callback

<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. -->

nlewins/mt5-small-finetuned-ceb-to-en-tfY

This model is a fine-tuned version of google/mt5-small on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Train Loss Validation Loss Train Bleu Train Gen Len Epoch
12.0581 5.6843 0.0157 461.8741 0
7.0723 4.5602 0.0087 478.2796 1
6.1442 4.2266 0.0382 406.7833 2
5.6655 4.0618 0.0433 330.1426 3
5.3850 3.9865 0.0829 259.1389 4
5.1640 3.9261 0.1254 178.6611 5
5.0054 3.8756 0.1863 124.9 6
4.8650 3.8294 0.5620 68.1852 7
4.7407 3.7764 0.9249 52.9574 8
4.6149 3.7323 1.0588 47.9815 9
4.5139 3.6872 1.0838 59.25 10
4.4121 3.6415 1.1190 53.8981 11
4.3220 3.6061 1.1783 48.1741 12
4.2280 3.5820 1.4894 47.8870 13
4.1399 3.5527 1.2391 59.2963 14
4.0721 3.5225 1.6758 55.7574 15
3.9868 3.4965 1.4156 64.5870 16
3.8999 3.4638 1.6347 55.7222 17
3.8296 3.4457 1.8747 55.6185 18
3.7547 3.4115 2.1395 49.1444 19
3.7035 3.3861 2.5959 44.5444 20
3.6185 3.3578 2.9953 43.9352 21
3.5474 3.3363 2.4835 53.4037 22
3.4760 3.3171 2.6081 55.5907 23
3.4081 3.2954 2.8999 48.4259 24
3.3343 3.2739 2.7449 54.2074 25
3.2743 3.2497 2.6874 52.2241 26
3.2062 3.2348 3.6606 46.0426 27
3.1360 3.2253 4.0205 39.6167 28
3.0652 3.2088 4.1229 39.5741 29
2.9938 3.2031 4.3597 38.95 30
2.9290 3.1854 4.7612 38.2852 31
2.8550 3.1806 5.1633 35.2222 32
2.7970 3.1639 5.2615 37.3389 33
2.7319 3.1642 5.2744 34.3944 34
2.6722 3.1634 5.2671 34.3778 35
2.5974 3.1444 5.5658 38.3593 36
2.5347 3.1347 6.0430 36.4444 37
2.4666 3.1478 6.7825 32.0593 38
2.4096 3.1433 6.9632 34.4370 39
2.3358 3.1419 6.5168 34.6926 40
2.2753 3.1384 6.9347 34.9370 41
2.2167 3.1478 7.0051 33.9111 42
2.1553 3.1580 7.0209 35.6667 43
2.0914 3.1575 6.6705 36.9593 44
2.0381 3.1591 7.0970 36.9815 45
1.9741 3.1798 7.2865 35.6778 46
1.9104 3.1725 6.9376 38.1019 47
1.8605 3.1986 8.2566 32.6074 48
1.7946 3.2041 8.5780 33.3444 49
1.7388 3.2184 8.2985 34.5556 50
1.6951 3.2317 8.5468 35.1185 51
1.6300 3.2446 8.0576 39.0148 52
1.5703 3.2577 8.7040 35.2444 53
1.5088 3.2716 8.4979 35.2815 54
1.4573 3.2817 8.4574 33.2519 55
1.4126 3.3135 8.6438 34.3519 56
1.3521 3.3628 9.1394 33.3278 57
1.3051 3.3638 9.4435 33.55 58
1.2568 3.3919 8.8440 35.5370 59
1.2155 3.4077 9.4603 33.0870 60
1.1777 3.4634 9.6192 33.6185 61
1.1183 3.4597 8.9327 34.7481 62
1.0765 3.5057 9.7793 33.6963 63
1.0385 3.5243 9.0765 34.7259 64
1.0039 3.5569 8.9329 34.8 65
0.9598 3.6022 9.7938 32.0352 66
0.9215 3.5964 9.1933 34.4907 67
0.8970 3.6275 9.7480 33.6296 68
0.8580 3.6986 9.5177 33.9056 69
0.8152 3.7642 9.1937 33.9796 70
0.7925 3.7641 9.0237 35.0685 71
0.7601 3.7957 9.8801 32.8444 72
0.7309 3.8979 10.1862 32.6593 73
0.7058 3.8768 9.5758 34.2778 74
0.6824 3.8878 10.0571 33.3722 75
0.6447 3.9822 9.8213 33.7241 76
0.6232 3.9933 10.4677 32.2778 77
0.5977 4.0486 10.3455 32.3019 78
0.5764 4.0573 10.2460 33.7981 79
0.5572 4.1037 10.3378 32.4093 80
0.5318 4.1893 10.0543 32.2037 81
0.5159 4.1671 10.5916 32.6981 82
0.4961 4.2527 10.3419 32.0370 83
0.4785 4.2824 9.7580 30.9185 84
0.4543 4.3117 9.7117 33.1093 85
0.4418 4.3158 10.3092 31.8148 86

Framework versions