<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-10-02_lte_txt_visual_conc_enc_all
This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6250
- Accuracy: 0.7025
- Exit 0 Accuracy: 0.065
- Exit 1 Accuracy: 0.48
- Exit 2 Accuracy: 0.57
- Exit 3 Accuracy: 0.6425
- Exit 4 Accuracy: 0.6875
- Exit 5 Accuracy: 0.71
- Exit 6 Accuracy: 0.715
- Exit 7 Accuracy: 0.705
- Exit 8 Accuracy: 0.71
- Exit 9 Accuracy: 0.7075
- Exit 10 Accuracy: 0.7075
- Exit 11 Accuracy: 0.705
- Exit 12 Accuracy: 0.7075
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 24
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy | Exit 5 Accuracy | Exit 6 Accuracy | Exit 7 Accuracy | Exit 8 Accuracy | Exit 9 Accuracy | Exit 10 Accuracy | Exit 11 Accuracy | Exit 12 Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 16 | 2.6844 | 0.1425 | 0.0725 | 0.0875 | 0.0625 | 0.0625 | 0.0625 | 0.07 | 0.115 | 0.065 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.105 |
No log | 1.98 | 33 | 2.5092 | 0.2425 | 0.0625 | 0.075 | 0.065 | 0.0625 | 0.065 | 0.17 | 0.13 | 0.1325 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0875 |
No log | 3.0 | 50 | 2.3693 | 0.2975 | 0.0575 | 0.125 | 0.105 | 0.1125 | 0.1075 | 0.1825 | 0.1825 | 0.1825 | 0.085 | 0.0675 | 0.0625 | 0.085 | 0.12 |
No log | 3.96 | 66 | 2.1547 | 0.39 | 0.065 | 0.1725 | 0.12 | 0.1325 | 0.1175 | 0.2925 | 0.2525 | 0.2725 | 0.095 | 0.0625 | 0.065 | 0.09 | 0.145 |
No log | 4.98 | 83 | 1.9916 | 0.45 | 0.0625 | 0.2375 | 0.125 | 0.1425 | 0.115 | 0.3075 | 0.2825 | 0.31 | 0.125 | 0.08 | 0.0825 | 0.1225 | 0.17 |
No log | 6.0 | 100 | 1.8193 | 0.475 | 0.0625 | 0.2725 | 0.1975 | 0.1625 | 0.17 | 0.405 | 0.355 | 0.3775 | 0.155 | 0.105 | 0.1375 | 0.1225 | 0.25 |
No log | 6.96 | 116 | 1.6391 | 0.5675 | 0.06 | 0.2825 | 0.2575 | 0.2175 | 0.2325 | 0.435 | 0.42 | 0.4125 | 0.2275 | 0.1175 | 0.165 | 0.125 | 0.2225 |
No log | 7.98 | 133 | 1.5333 | 0.5975 | 0.0575 | 0.2575 | 0.3 | 0.3025 | 0.34 | 0.445 | 0.435 | 0.495 | 0.3425 | 0.26 | 0.1825 | 0.1325 | 0.25 |
No log | 9.0 | 150 | 1.4413 | 0.5975 | 0.06 | 0.245 | 0.3075 | 0.345 | 0.395 | 0.4675 | 0.455 | 0.5075 | 0.4375 | 0.3325 | 0.2025 | 0.1375 | 0.305 |
No log | 9.96 | 166 | 1.3251 | 0.62 | 0.06 | 0.3025 | 0.335 | 0.3575 | 0.4525 | 0.51 | 0.5275 | 0.55 | 0.5125 | 0.4725 | 0.2575 | 0.1875 | 0.375 |
No log | 10.98 | 183 | 1.2767 | 0.6275 | 0.07 | 0.3375 | 0.345 | 0.41 | 0.48 | 0.5025 | 0.5125 | 0.565 | 0.565 | 0.555 | 0.3875 | 0.2075 | 0.3625 |
No log | 12.0 | 200 | 1.1751 | 0.675 | 0.07 | 0.3425 | 0.3425 | 0.44 | 0.48 | 0.5275 | 0.5525 | 0.5925 | 0.5575 | 0.575 | 0.47 | 0.26 | 0.4475 |
No log | 12.96 | 216 | 1.2128 | 0.65 | 0.0675 | 0.3375 | 0.3675 | 0.4225 | 0.5125 | 0.505 | 0.5325 | 0.5925 | 0.5825 | 0.6125 | 0.525 | 0.34 | 0.48 |
No log | 13.98 | 233 | 1.1501 | 0.6825 | 0.07 | 0.35 | 0.4 | 0.485 | 0.5475 | 0.5425 | 0.5475 | 0.5975 | 0.6125 | 0.6325 | 0.5925 | 0.4425 | 0.56 |
No log | 15.0 | 250 | 1.1550 | 0.67 | 0.0675 | 0.3625 | 0.425 | 0.505 | 0.545 | 0.5575 | 0.5875 | 0.625 | 0.6 | 0.6375 | 0.5975 | 0.4875 | 0.5675 |
No log | 15.96 | 266 | 1.1341 | 0.6825 | 0.0675 | 0.375 | 0.445 | 0.515 | 0.5575 | 0.5775 | 0.61 | 0.65 | 0.605 | 0.635 | 0.6225 | 0.54 | 0.6075 |
No log | 16.98 | 283 | 1.1208 | 0.7025 | 0.0625 | 0.385 | 0.4325 | 0.5275 | 0.5825 | 0.61 | 0.6275 | 0.6475 | 0.635 | 0.6275 | 0.62 | 0.5525 | 0.6425 |
No log | 18.0 | 300 | 1.1508 | 0.6975 | 0.065 | 0.3875 | 0.4225 | 0.525 | 0.5875 | 0.595 | 0.6225 | 0.65 | 0.6425 | 0.6225 | 0.64 | 0.58 | 0.665 |
No log | 18.96 | 316 | 1.1723 | 0.7 | 0.0625 | 0.3925 | 0.4475 | 0.5525 | 0.585 | 0.615 | 0.6475 | 0.6625 | 0.655 | 0.6425 | 0.65 | 0.5975 | 0.65 |
No log | 19.98 | 333 | 1.1968 | 0.6875 | 0.0675 | 0.3875 | 0.465 | 0.555 | 0.61 | 0.6225 | 0.6325 | 0.65 | 0.65 | 0.645 | 0.66 | 0.6325 | 0.6725 |
No log | 21.0 | 350 | 1.2006 | 0.7 | 0.0675 | 0.405 | 0.4725 | 0.5625 | 0.62 | 0.6225 | 0.655 | 0.67 | 0.66 | 0.6675 | 0.69 | 0.6575 | 0.6925 |
No log | 21.96 | 366 | 1.2073 | 0.6925 | 0.0675 | 0.4175 | 0.485 | 0.56 | 0.62 | 0.625 | 0.6425 | 0.6775 | 0.6625 | 0.6825 | 0.6975 | 0.705 | 0.695 |
No log | 22.98 | 383 | 1.2901 | 0.6875 | 0.07 | 0.4125 | 0.4875 | 0.56 | 0.6325 | 0.6425 | 0.665 | 0.6725 | 0.6825 | 0.69 | 0.69 | 0.705 | 0.695 |
No log | 24.0 | 400 | 1.3072 | 0.69 | 0.0625 | 0.42 | 0.475 | 0.5675 | 0.635 | 0.645 | 0.665 | 0.68 | 0.68 | 0.6725 | 0.68 | 0.69 | 0.69 |
No log | 24.96 | 416 | 1.3590 | 0.6875 | 0.0625 | 0.4375 | 0.4875 | 0.5675 | 0.635 | 0.65 | 0.6725 | 0.6825 | 0.6825 | 0.6925 | 0.69 | 0.6975 | 0.695 |
No log | 25.98 | 433 | 1.4236 | 0.6825 | 0.065 | 0.435 | 0.4825 | 0.565 | 0.63 | 0.6325 | 0.67 | 0.67 | 0.67 | 0.6675 | 0.6775 | 0.6875 | 0.685 |
No log | 27.0 | 450 | 1.3880 | 0.6925 | 0.065 | 0.4325 | 0.5 | 0.59 | 0.645 | 0.65 | 0.6775 | 0.6775 | 0.6825 | 0.6875 | 0.68 | 0.685 | 0.695 |
No log | 27.96 | 466 | 1.3898 | 0.705 | 0.0625 | 0.4325 | 0.5075 | 0.6 | 0.655 | 0.685 | 0.68 | 0.6975 | 0.7 | 0.6925 | 0.685 | 0.705 | 0.7125 |
No log | 28.98 | 483 | 1.3835 | 0.7075 | 0.0625 | 0.4325 | 0.5025 | 0.5925 | 0.6675 | 0.67 | 0.69 | 0.7025 | 0.7 | 0.705 | 0.6975 | 0.7025 | 0.71 |
12.403 | 30.0 | 500 | 1.4914 | 0.6825 | 0.0625 | 0.4425 | 0.5175 | 0.6125 | 0.6675 | 0.6925 | 0.685 | 0.6875 | 0.685 | 0.6825 | 0.68 | 0.6825 | 0.69 |
12.403 | 30.96 | 516 | 1.4158 | 0.705 | 0.065 | 0.44 | 0.52 | 0.615 | 0.6725 | 0.685 | 0.7075 | 0.7 | 0.695 | 0.6925 | 0.6875 | 0.69 | 0.71 |
12.403 | 31.98 | 533 | 1.4566 | 0.7075 | 0.065 | 0.445 | 0.5275 | 0.6 | 0.665 | 0.66 | 0.6925 | 0.695 | 0.695 | 0.7025 | 0.7025 | 0.695 | 0.705 |
12.403 | 33.0 | 550 | 1.4925 | 0.6825 | 0.0625 | 0.45 | 0.5225 | 0.605 | 0.6775 | 0.6675 | 0.7025 | 0.6975 | 0.6975 | 0.6975 | 0.7025 | 0.6975 | 0.705 |
12.403 | 33.96 | 566 | 1.4863 | 0.6975 | 0.0675 | 0.4375 | 0.5325 | 0.61 | 0.6775 | 0.6775 | 0.6975 | 0.695 | 0.6975 | 0.69 | 0.6975 | 0.695 | 0.7075 |
12.403 | 34.98 | 583 | 1.4770 | 0.7075 | 0.0675 | 0.4625 | 0.525 | 0.625 | 0.6725 | 0.6775 | 0.695 | 0.6875 | 0.69 | 0.6925 | 0.695 | 0.705 | 0.7025 |
12.403 | 36.0 | 600 | 1.5347 | 0.6875 | 0.065 | 0.44 | 0.54 | 0.6175 | 0.6775 | 0.68 | 0.695 | 0.69 | 0.69 | 0.695 | 0.6875 | 0.6925 | 0.6975 |
12.403 | 36.96 | 616 | 1.5124 | 0.7025 | 0.065 | 0.445 | 0.5325 | 0.62 | 0.675 | 0.68 | 0.6975 | 0.7 | 0.6975 | 0.695 | 0.6975 | 0.7 | 0.71 |
12.403 | 37.98 | 633 | 1.5120 | 0.7075 | 0.065 | 0.4525 | 0.5375 | 0.6025 | 0.67 | 0.6925 | 0.6975 | 0.7025 | 0.695 | 0.6925 | 0.6975 | 0.6975 | 0.7075 |
12.403 | 39.0 | 650 | 1.5235 | 0.705 | 0.065 | 0.4575 | 0.5325 | 0.6175 | 0.675 | 0.6925 | 0.705 | 0.7 | 0.695 | 0.695 | 0.7 | 0.7025 | 0.72 |
12.403 | 39.96 | 666 | 1.5712 | 0.6875 | 0.065 | 0.46 | 0.5425 | 0.635 | 0.675 | 0.7 | 0.7025 | 0.7025 | 0.7 | 0.6975 | 0.6925 | 0.6925 | 0.6975 |
12.403 | 40.98 | 683 | 1.5346 | 0.705 | 0.065 | 0.455 | 0.545 | 0.6275 | 0.675 | 0.6975 | 0.6975 | 0.695 | 0.695 | 0.7025 | 0.7025 | 0.7025 | 0.71 |
12.403 | 42.0 | 700 | 1.5656 | 0.7025 | 0.065 | 0.47 | 0.55 | 0.635 | 0.6725 | 0.7 | 0.7075 | 0.7025 | 0.7025 | 0.7 | 0.7 | 0.6975 | 0.71 |
12.403 | 42.96 | 716 | 1.5712 | 0.695 | 0.065 | 0.465 | 0.5575 | 0.63 | 0.685 | 0.695 | 0.705 | 0.71 | 0.705 | 0.71 | 0.7025 | 0.705 | 0.7 |
12.403 | 43.98 | 733 | 1.5481 | 0.7075 | 0.0675 | 0.4675 | 0.545 | 0.63 | 0.6825 | 0.705 | 0.705 | 0.705 | 0.705 | 0.7 | 0.7025 | 0.705 | 0.715 |
12.403 | 45.0 | 750 | 1.5867 | 0.705 | 0.065 | 0.4625 | 0.5525 | 0.6325 | 0.68 | 0.6975 | 0.705 | 0.7025 | 0.7075 | 0.7025 | 0.6975 | 0.705 | 0.7075 |
12.403 | 45.96 | 766 | 1.5766 | 0.7075 | 0.0675 | 0.475 | 0.55 | 0.63 | 0.685 | 0.705 | 0.7025 | 0.7075 | 0.705 | 0.705 | 0.705 | 0.705 | 0.705 |
12.403 | 46.98 | 783 | 1.5702 | 0.71 | 0.065 | 0.475 | 0.5725 | 0.6475 | 0.6925 | 0.71 | 0.705 | 0.71 | 0.705 | 0.7025 | 0.7075 | 0.71 | 0.7225 |
12.403 | 48.0 | 800 | 1.5957 | 0.705 | 0.065 | 0.47 | 0.5575 | 0.6325 | 0.6875 | 0.715 | 0.71 | 0.7075 | 0.71 | 0.7025 | 0.7075 | 0.7025 | 0.7125 |
12.403 | 48.96 | 816 | 1.6135 | 0.705 | 0.065 | 0.4725 | 0.555 | 0.64 | 0.68 | 0.7 | 0.7075 | 0.71 | 0.705 | 0.7 | 0.6975 | 0.705 | 0.7125 |
12.403 | 49.98 | 833 | 1.5976 | 0.7075 | 0.065 | 0.4775 | 0.575 | 0.65 | 0.695 | 0.7025 | 0.7075 | 0.7075 | 0.7075 | 0.7075 | 0.7075 | 0.705 | 0.7125 |
12.403 | 51.0 | 850 | 1.5968 | 0.7175 | 0.065 | 0.4725 | 0.5675 | 0.6425 | 0.6875 | 0.7075 | 0.71 | 0.7125 | 0.7075 | 0.71 | 0.71 | 0.71 | 0.715 |
12.403 | 51.96 | 866 | 1.6005 | 0.705 | 0.065 | 0.475 | 0.565 | 0.6375 | 0.685 | 0.705 | 0.715 | 0.71 | 0.7025 | 0.7075 | 0.7075 | 0.705 | 0.715 |
12.403 | 52.98 | 883 | 1.6061 | 0.7125 | 0.065 | 0.48 | 0.57 | 0.6425 | 0.6925 | 0.71 | 0.715 | 0.71 | 0.705 | 0.71 | 0.7075 | 0.7075 | 0.7175 |
12.403 | 54.0 | 900 | 1.6100 | 0.7025 | 0.065 | 0.48 | 0.5675 | 0.6425 | 0.69 | 0.7075 | 0.7125 | 0.7075 | 0.705 | 0.7025 | 0.705 | 0.7025 | 0.7075 |
12.403 | 54.96 | 916 | 1.6125 | 0.705 | 0.065 | 0.48 | 0.57 | 0.6475 | 0.69 | 0.71 | 0.71 | 0.7075 | 0.705 | 0.705 | 0.7025 | 0.7025 | 0.71 |
12.403 | 55.98 | 933 | 1.6285 | 0.7 | 0.065 | 0.4825 | 0.57 | 0.6425 | 0.6875 | 0.705 | 0.71 | 0.705 | 0.7025 | 0.705 | 0.705 | 0.7 | 0.7025 |
12.403 | 57.0 | 950 | 1.6270 | 0.7025 | 0.065 | 0.48 | 0.57 | 0.6425 | 0.69 | 0.71 | 0.7175 | 0.705 | 0.71 | 0.7075 | 0.705 | 0.7025 | 0.7025 |
12.403 | 57.6 | 960 | 1.6250 | 0.7025 | 0.065 | 0.48 | 0.57 | 0.6425 | 0.6875 | 0.71 | 0.715 | 0.705 | 0.71 | 0.7075 | 0.7075 | 0.705 | 0.7075 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3