<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
flan-t5-base-model3-token1
This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1761
- Rouge1: 74.8442
- Rouge2: 67.1345
- Rougel: 73.9377
- Rougelsum: 74.7805
- Gen Len: 16.0557
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
11.3452 | 0.7 | 200 | 0.4023 | 54.9094 | 45.9641 | 54.4888 | 54.7708 | 8.6307 |
0.3215 | 1.39 | 400 | 0.2252 | 72.8643 | 63.763 | 71.6779 | 72.5956 | 16.2108 |
0.2502 | 2.09 | 600 | 0.2052 | 73.7732 | 65.343 | 72.7147 | 73.7003 | 16.0035 |
0.2072 | 2.79 | 800 | 0.1977 | 73.7375 | 65.4023 | 72.5708 | 73.5249 | 16.0436 |
0.191 | 3.48 | 1000 | 0.1923 | 74.1851 | 65.5192 | 73.2189 | 74.0127 | 15.8502 |
0.1913 | 4.18 | 1200 | 0.1870 | 74.3015 | 66.4095 | 73.113 | 74.1052 | 16.0366 |
0.1672 | 4.88 | 1400 | 0.1814 | 74.5867 | 66.657 | 73.6986 | 74.4877 | 15.9652 |
0.1666 | 5.57 | 1600 | 0.1818 | 74.4879 | 66.4071 | 73.3689 | 74.3287 | 15.9739 |
0.1565 | 6.27 | 1800 | 0.1774 | 74.4269 | 66.8322 | 73.4838 | 74.3445 | 16.0906 |
0.1533 | 6.97 | 2000 | 0.1755 | 74.7965 | 66.8688 | 73.522 | 74.6461 | 15.9373 |
0.1447 | 7.67 | 2200 | 0.1764 | 74.4052 | 66.6402 | 73.3189 | 74.2453 | 15.9774 |
0.141 | 8.36 | 2400 | 0.1768 | 74.6052 | 66.5586 | 73.4595 | 74.3578 | 15.9338 |
0.1395 | 9.06 | 2600 | 0.1762 | 74.739 | 66.8901 | 73.6772 | 74.5243 | 16.0697 |
0.136 | 9.76 | 2800 | 0.1761 | 74.8442 | 67.1345 | 73.9377 | 74.7805 | 16.0557 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.14.0