<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
toxicity-score-multi-classification
This model is a fine-tuned version of line-corporation/line-distilbert-base-japanese on a Japanese toxicity dataset. It achieves the following results on the evaluation set:
- Loss: 0.2649
- Roc Auc: 0.7992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8.133692392125703e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Roc Auc |
---|---|---|---|---|
No log | 1.0 | 20 | 0.6213 | 0.5148 |
No log | 2.0 | 40 | 0.4762 | 0.4616 |
No log | 3.0 | 60 | 0.3754 | 0.5830 |
No log | 4.0 | 80 | 0.3314 | 0.5706 |
No log | 5.0 | 100 | 0.3140 | 0.5740 |
No log | 6.0 | 120 | 0.3067 | 0.6238 |
No log | 7.0 | 140 | 0.3010 | 0.6645 |
No log | 8.0 | 160 | 0.2975 | 0.7177 |
No log | 9.0 | 180 | 0.2949 | 0.7392 |
No log | 10.0 | 200 | 0.2892 | 0.7731 |
No log | 11.0 | 220 | 0.2828 | 0.7954 |
No log | 12.0 | 240 | 0.2827 | 0.7932 |
No log | 13.0 | 260 | 0.2756 | 0.7984 |
No log | 14.0 | 280 | 0.2715 | 0.8052 |
No log | 15.0 | 300 | 0.2733 | 0.8100 |
No log | 16.0 | 320 | 0.2754 | 0.8142 |
No log | 17.0 | 340 | 0.2668 | 0.8130 |
No log | 18.0 | 360 | 0.2642 | 0.8138 |
No log | 19.0 | 380 | 0.2639 | 0.8117 |
No log | 20.0 | 400 | 0.2659 | 0.8052 |
No log | 21.0 | 420 | 0.2646 | 0.8082 |
No log | 22.0 | 440 | 0.2643 | 0.8039 |
No log | 23.0 | 460 | 0.2646 | 0.8022 |
No log | 24.0 | 480 | 0.2644 | 0.8044 |
0.2305 | 25.0 | 500 | 0.2639 | 0.8035 |
0.2305 | 26.0 | 520 | 0.2639 | 0.8027 |
0.2305 | 27.0 | 540 | 0.2647 | 0.8001 |
0.2305 | 28.0 | 560 | 0.2643 | 0.8005 |
0.2305 | 29.0 | 580 | 0.2649 | 0.8001 |
0.2305 | 30.0 | 600 | 0.2649 | 0.7992 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.0