<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
text_shortening_model_v69
This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5824
- Bert precision: 0.8984
- Bert recall: 0.9007
- Bert f1-score: 0.899
- Average word count: 6.3944
- Max word count: 16
- Min word count: 2
- Average token count: 10.5305
- % shortened texts with length > 12: 0.8008
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Bert precision | Bert recall | Bert f1-score | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
1.6663 | 1.0 | 37 | 1.2012 | 0.8867 | 0.8851 | 0.8853 | 6.2943 | 15 | 1 | 10.2032 | 0.7007 |
1.228 | 2.0 | 74 | 1.1078 | 0.8922 | 0.8923 | 0.8918 | 6.3453 | 16 | 2 | 10.2863 | 1.5015 |
1.0592 | 3.0 | 111 | 1.0686 | 0.8922 | 0.8955 | 0.8933 | 6.5656 | 16 | 2 | 10.5856 | 0.8008 |
0.9195 | 4.0 | 148 | 1.0606 | 0.8958 | 0.8952 | 0.895 | 6.3323 | 16 | 1 | 10.3564 | 0.9009 |
0.8261 | 5.0 | 185 | 1.0630 | 0.897 | 0.8972 | 0.8967 | 6.3413 | 16 | 2 | 10.4134 | 0.7007 |
0.7476 | 6.0 | 222 | 1.0865 | 0.8946 | 0.8987 | 0.8962 | 6.5626 | 16 | 2 | 10.6527 | 1.1011 |
0.6731 | 7.0 | 259 | 1.1104 | 0.8962 | 0.8957 | 0.8955 | 6.3073 | 16 | 2 | 10.3063 | 0.9009 |
0.6166 | 8.0 | 296 | 1.1198 | 0.8976 | 0.9003 | 0.8985 | 6.4505 | 16 | 2 | 10.5255 | 0.8008 |
0.5618 | 9.0 | 333 | 1.1591 | 0.8959 | 0.9007 | 0.8978 | 6.5355 | 16 | 2 | 10.6957 | 1.7017 |
0.5272 | 10.0 | 370 | 1.1745 | 0.8982 | 0.9023 | 0.8998 | 6.5586 | 16 | 1 | 10.7227 | 1.7017 |
0.4796 | 11.0 | 407 | 1.1884 | 0.8971 | 0.899 | 0.8976 | 6.4244 | 16 | 1 | 10.5215 | 1.001 |
0.452 | 12.0 | 444 | 1.2263 | 0.9009 | 0.9004 | 0.9002 | 6.2342 | 16 | 1 | 10.3213 | 0.8008 |
0.4163 | 13.0 | 481 | 1.2370 | 0.8979 | 0.8987 | 0.8978 | 6.3113 | 16 | 1 | 10.3564 | 1.2012 |
0.3837 | 14.0 | 518 | 1.2830 | 0.8986 | 0.902 | 0.8998 | 6.4725 | 16 | 1 | 10.5786 | 1.7017 |
0.3544 | 15.0 | 555 | 1.2913 | 0.8991 | 0.8997 | 0.8989 | 6.3524 | 16 | 1 | 10.3984 | 1.001 |
0.3319 | 16.0 | 592 | 1.3335 | 0.8977 | 0.8987 | 0.8977 | 6.3423 | 16 | 2 | 10.4354 | 1.2012 |
0.313 | 17.0 | 629 | 1.3357 | 0.8996 | 0.9014 | 0.9 | 6.3854 | 15 | 2 | 10.5445 | 1.001 |
0.3005 | 18.0 | 666 | 1.3610 | 0.8999 | 0.8994 | 0.8991 | 6.1962 | 15 | 2 | 10.2753 | 0.6006 |
0.2789 | 19.0 | 703 | 1.3865 | 0.8991 | 0.9028 | 0.9005 | 6.4314 | 16 | 2 | 10.6406 | 1.001 |
0.2706 | 20.0 | 740 | 1.3929 | 0.8983 | 0.9015 | 0.8994 | 6.4244 | 15 | 2 | 10.5986 | 0.9009 |
0.2476 | 21.0 | 777 | 1.4228 | 0.8998 | 0.9004 | 0.8996 | 6.3023 | 16 | 2 | 10.4264 | 0.9009 |
0.2434 | 22.0 | 814 | 1.4307 | 0.8985 | 0.9002 | 0.8988 | 6.3223 | 16 | 2 | 10.4094 | 0.6006 |
0.2327 | 23.0 | 851 | 1.4522 | 0.8977 | 0.8995 | 0.8981 | 6.3473 | 16 | 2 | 10.4885 | 0.7007 |
0.2164 | 24.0 | 888 | 1.4538 | 0.8995 | 0.9006 | 0.8995 | 6.3203 | 16 | 2 | 10.4014 | 0.8008 |
0.2123 | 25.0 | 925 | 1.4741 | 0.8979 | 0.9006 | 0.8987 | 6.3934 | 16 | 2 | 10.6116 | 0.7007 |
0.2054 | 26.0 | 962 | 1.5038 | 0.8971 | 0.9006 | 0.8984 | 6.4314 | 16 | 2 | 10.6106 | 0.7007 |
0.1996 | 27.0 | 999 | 1.4962 | 0.8982 | 0.9015 | 0.8994 | 6.4525 | 16 | 2 | 10.6316 | 0.9009 |
0.1881 | 28.0 | 1036 | 1.5320 | 0.8993 | 0.9021 | 0.9002 | 6.4054 | 15 | 2 | 10.5876 | 0.7007 |
0.1814 | 29.0 | 1073 | 1.5209 | 0.8978 | 0.9007 | 0.8987 | 6.4535 | 16 | 2 | 10.6116 | 0.9009 |
0.1738 | 30.0 | 1110 | 1.5377 | 0.9003 | 0.9022 | 0.9008 | 6.3784 | 16 | 2 | 10.5315 | 0.7007 |
0.1761 | 31.0 | 1147 | 1.5387 | 0.8996 | 0.9021 | 0.9004 | 6.3744 | 16 | 2 | 10.5946 | 0.8008 |
0.1632 | 32.0 | 1184 | 1.5566 | 0.8995 | 0.9013 | 0.8999 | 6.3654 | 16 | 2 | 10.5105 | 1.001 |
0.1613 | 33.0 | 1221 | 1.5549 | 0.8994 | 0.9019 | 0.9001 | 6.3944 | 16 | 2 | 10.5696 | 1.001 |
0.1555 | 34.0 | 1258 | 1.5728 | 0.8993 | 0.9021 | 0.9002 | 6.4054 | 16 | 2 | 10.5936 | 1.1011 |
0.1604 | 35.0 | 1295 | 1.5671 | 0.8987 | 0.9018 | 0.8998 | 6.4274 | 16 | 2 | 10.5836 | 1.1011 |
0.1525 | 36.0 | 1332 | 1.5748 | 0.8991 | 0.901 | 0.8995 | 6.3664 | 16 | 2 | 10.5205 | 1.1011 |
0.1534 | 37.0 | 1369 | 1.5709 | 0.8993 | 0.9009 | 0.8996 | 6.3493 | 16 | 2 | 10.4775 | 0.8008 |
0.1478 | 38.0 | 1406 | 1.5777 | 0.8986 | 0.9008 | 0.8992 | 6.3894 | 16 | 2 | 10.5095 | 0.8008 |
0.1423 | 39.0 | 1443 | 1.5815 | 0.8986 | 0.9008 | 0.8992 | 6.3934 | 16 | 2 | 10.5295 | 0.8008 |
0.1474 | 40.0 | 1480 | 1.5824 | 0.8984 | 0.9007 | 0.899 | 6.3944 | 16 | 2 | 10.5305 | 0.8008 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3