LlaMa 2 7b 4-bit Python Coder (GPTQ)👩💻
LlaMa-2 7b fine-tuned on the python_code_instructions_18k_alpaca Code instructions dataset by using the method QLoRA in 4-bit with PEFT library.
Pretrained description
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.
Model Architecture Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety
Training data
python_code_instructions_18k_alpaca
The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.
Framework versions
- PEFT 0.4.0
Example of usage
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load quantized model and tokenizer.
tokenizer = AutoTokenizer.from_pretrained("NurtureAI/llama-2-7b-int4-gptq-python")
model = AutoModelForCausalLM.from_pretrained(
"NurtureAI/llama-2-7b-int4-gptq-python",
load_in_4bit=True,
torch_dtype=torch.float16,
device_map=device_map,
)
# prepare prompt.
instruction="Write a Python function to display the first and last elements of a list."
prompt = f"""### Instruction:
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
### Task:
{instruction}
### Input:
### Response:
"""
# generate response.
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
# with torch.inference_mode():
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.5)
print(f"Prompt:\n{prompt}\n")
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")
Citation
@misc {NurtureAI,
author = { Raymond Hernandez },
title = { NurtureAI/llama-2-7b-int4-gptq-python },
year = { 2023 },
url = { https://huggingface.co/NurtureAI/llama-2-7b-int4-gptq-python },
publisher = { Hugging Face }
}