generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

final-lr2e-5-bs16-fp16-2

This model is a fine-tuned version of GroNLP/hateBERT on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Weighted F1 Accuracy Confusion Matrix Confusion Matrix Norm Classification Report
0.3177 1.0 1000 0.2894 0.8323 0.8812 0.7373 0.886 [[2904 126]
[ 330 640]] [[0.95841584 0.04158416]
[0.34020619 0.65979381]] precision recall f1-score support
0 0.897959 0.958416 0.927203 3030.000
1 0.835509 0.659794 0.737327 970.000
accuracy 0.886000 0.886000 0.886000 0.886
macro avg 0.866734 0.809105 0.832265 4000.000
weighted avg 0.882815 0.886000 0.881158 4000.000
0.2232 2.0 2000 0.3370 0.8405 0.8830 0.7579 0.8832 [[2802 228]
[ 239 731]] [[0.92475248 0.07524752]
[0.24639175 0.75360825]] precision recall f1-score support
0 0.921407 0.924752 0.923077 3030.00000
1 0.762252 0.753608 0.757906 970.00000
accuracy 0.883250 0.883250 0.883250 0.88325
macro avg 0.841830 0.839180 0.840491 4000.00000
weighted avg 0.882812 0.883250 0.883023 4000.00000
0.1534 3.0 3000 0.4219 0.8457 0.8868 0.7658 0.887 [[2809 221]
[ 231 739]] [[0.92706271 0.07293729]
[0.23814433 0.76185567]] precision recall f1-score support
0 0.924013 0.927063 0.925535 3030.000
1 0.769792 0.761856 0.765803 970.000
accuracy 0.887000 0.887000 0.887000 0.887
macro avg 0.846902 0.844459 0.845669 4000.000
weighted avg 0.886614 0.887000 0.886800 4000.000

Framework versions