Aquila_logo

<h4 align="center"> <p> <b>English</b> | <a href="https://huggingface.co/BAAI/AquilaSQL-7B/blob/main/README_zh.md">简体中文</a> </p> </h4>

Aquila Language Model is the first open source language model that supports both Chinese and English knowledge, commercial license agreements, and compliance with domestic data regulations.

The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels, including the FlagAI GitHub repository, FlagAI's Zhihu account and FlagAI's official technical communication group.

Model Model Type Description Status GPUs Used
AquilaSQL-7B chat model text2sql model, cotinue traind from the AquilaCode-base model, AquilaSQL achieved sota on the cspider leadboard published Nvidia-A100

We will continue to release improved versions of Aquila model as open source. (https://huggingface.co/BAAI/AquilaSQL-7B/blob/main/change_log.log).

<!-- </table> -->

Inference

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda")
model_info = "BAAI/AquilaSQL-7B"

tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_info, trust_remote_code=True, torch_dtype=torch.float16, device_map='auto')

model.eval()
model.to(device)
torch.manual_seed(123)

text = "有多个数据库表,信息如下:\n表名为cars_data,包含的属性为cars_data.horsepower,cars_data.accelerate,cars_data.mpg,cars_data.id,cars_data.year;表名为continents,包含的属性为continents.contid,continents.continent;表名为countries,包含的属性为countries.continent,countries.countryname,countries.countryid;表名为model_list,包含的属性为model_list.model,model_list.maker,model_list.modelid,它们之间的关系为 countries.continent = continents.contid\n请为下面的问题编写sql查询语句:\n加速度比马力最大的汽车更大的汽车有多少辆? "

def generate_prompt(input: str):
    prompt = f"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: {input}###Assistant:"
    return prompt

stop_tokens = ["###", "[UNK]", "</s>","<|endoftext|>"]

with torch.no_grad():

    _input = generate_prompt(text)
    tokens = tokenizer.encode_plus(_input, None, max_length=None)['input_ids']
    tokens = torch.tensor(tokens)[None,].to(device)
    out = model.generate(tokens, do_sample=False, max_length=1024, eos_token_id=100007,max_new_tokens=512,
                            bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0]
    out = tokenizer.decode(out.cpu().numpy().tolist())
    print(out)

License

AquilaSQL-7B open-source model is licensed under BAAI Aquila Model Licence Agreement