generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7668 1.0 10 1.5655 {'precision': 0.01564945226917058, 'recall': 0.012360939431396786, 'f1': 0.013812154696132598, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.31925675675675674, 'recall': 0.17746478873239438, 'f1': 0.22812311406155703, 'number': 1065} 0.1617 0.0998 0.1234 0.3599
1.4335 2.0 20 1.2504 {'precision': 0.22972972972972974, 'recall': 0.2521631644004944, 'f1': 0.24042427813789036, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.391304347826087, 'recall': 0.5492957746478874, 'f1': 0.45703125, 'number': 1065} 0.3311 0.3959 0.3606 0.5926
1.1215 3.0 30 0.9771 {'precision': 0.4570273003033367, 'recall': 0.5587144622991347, 'f1': 0.5027808676307008, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5460829493087558, 'recall': 0.6676056338028169, 'f1': 0.6007604562737643, 'number': 1065} 0.5022 0.5835 0.5398 0.6802
0.8632 4.0 40 0.7960 {'precision': 0.5714285714285714, 'recall': 0.7317676143386898, 'f1': 0.6417344173441735, 'number': 809} {'precision': 0.0379746835443038, 'recall': 0.025210084033613446, 'f1': 0.030303030303030304, 'number': 119} {'precision': 0.633201581027668, 'recall': 0.752112676056338, 'f1': 0.6875536480686696, 'number': 1065} 0.5866 0.7005 0.6385 0.7572
0.6913 5.0 50 0.7202 {'precision': 0.6335797254487856, 'recall': 0.7416563658838071, 'f1': 0.683371298405467, 'number': 809} {'precision': 0.10752688172043011, 'recall': 0.08403361344537816, 'f1': 0.09433962264150944, 'number': 119} {'precision': 0.6907216494845361, 'recall': 0.7549295774647887, 'f1': 0.721399730820996, 'number': 1065} 0.6416 0.7095 0.6738 0.7808
0.5758 6.0 60 0.6812 {'precision': 0.6677248677248677, 'recall': 0.7799752781211372, 'f1': 0.7194982896237172, 'number': 809} {'precision': 0.17857142857142858, 'recall': 0.16806722689075632, 'f1': 0.17316017316017318, 'number': 119} {'precision': 0.6919315403422983, 'recall': 0.7971830985915493, 'f1': 0.7408376963350787, 'number': 1065} 0.6567 0.7526 0.7014 0.7947
0.4993 7.0 70 0.6593 {'precision': 0.6597938144329897, 'recall': 0.7911001236093943, 'f1': 0.7195053400786959, 'number': 809} {'precision': 0.21875, 'recall': 0.17647058823529413, 'f1': 0.19534883720930232, 'number': 119} {'precision': 0.7158703071672355, 'recall': 0.787793427230047, 'f1': 0.7501117568171659, 'number': 1065} 0.6702 0.7526 0.7091 0.7951
0.4397 8.0 80 0.6633 {'precision': 0.6749192680301399, 'recall': 0.7750309023485785, 'f1': 0.721518987341772, 'number': 809} {'precision': 0.23943661971830985, 'recall': 0.2857142857142857, 'f1': 0.26053639846743293, 'number': 119} {'precision': 0.7274290627687017, 'recall': 0.7943661971830986, 'f1': 0.7594254937163376, 'number': 1065} 0.6746 0.7561 0.7130 0.7987
0.396 9.0 90 0.6605 {'precision': 0.6875699888017918, 'recall': 0.7589616810877626, 'f1': 0.7215041128084607, 'number': 809} {'precision': 0.25203252032520324, 'recall': 0.2605042016806723, 'f1': 0.25619834710743805, 'number': 119} {'precision': 0.7344013490725126, 'recall': 0.8178403755868544, 'f1': 0.7738782763216348, 'number': 1065} 0.6885 0.7607 0.7228 0.8026
0.3578 10.0 100 0.6624 {'precision': 0.6842105263157895, 'recall': 0.7873918417799752, 'f1': 0.7321839080459769, 'number': 809} {'precision': 0.2773109243697479, 'recall': 0.2773109243697479, 'f1': 0.2773109243697479, 'number': 119} {'precision': 0.7476231633535004, 'recall': 0.812206572769953, 'f1': 0.7785778577857785, 'number': 1065} 0.6955 0.7702 0.7310 0.8022
0.3249 11.0 110 0.6678 {'precision': 0.6865671641791045, 'recall': 0.796044499381953, 'f1': 0.7372638809387521, 'number': 809} {'precision': 0.273972602739726, 'recall': 0.33613445378151263, 'f1': 0.3018867924528302, 'number': 119} {'precision': 0.7584973166368515, 'recall': 0.7962441314553991, 'f1': 0.7769125057260651, 'number': 1065} 0.6957 0.7687 0.7304 0.8010
0.3021 12.0 120 0.6681 {'precision': 0.7120535714285714, 'recall': 0.788627935723115, 'f1': 0.7483870967741936, 'number': 809} {'precision': 0.2923076923076923, 'recall': 0.31932773109243695, 'f1': 0.3052208835341365, 'number': 119} {'precision': 0.7547826086956522, 'recall': 0.8150234741784037, 'f1': 0.7837471783295711, 'number': 1065} 0.7096 0.7747 0.7407 0.8045
0.2895 13.0 130 0.6755 {'precision': 0.7122060470324748, 'recall': 0.7861557478368356, 'f1': 0.7473560517038778, 'number': 809} {'precision': 0.2887323943661972, 'recall': 0.3445378151260504, 'f1': 0.31417624521072796, 'number': 119} {'precision': 0.7595048629531388, 'recall': 0.8065727699530516, 'f1': 0.7823315118397085, 'number': 1065} 0.7091 0.7707 0.7386 0.8026
0.2734 14.0 140 0.6768 {'precision': 0.7093541202672605, 'recall': 0.7873918417799752, 'f1': 0.7463386057410661, 'number': 809} {'precision': 0.28368794326241137, 'recall': 0.33613445378151263, 'f1': 0.3076923076923077, 'number': 119} {'precision': 0.7570175438596491, 'recall': 0.8103286384976526, 'f1': 0.7827664399092971, 'number': 1065} 0.7067 0.7727 0.7383 0.8026
0.2804 15.0 150 0.6771 {'precision': 0.7053571428571429, 'recall': 0.7812113720642769, 'f1': 0.7413489736070381, 'number': 809} {'precision': 0.29770992366412213, 'recall': 0.3277310924369748, 'f1': 0.312, 'number': 119} {'precision': 0.763716814159292, 'recall': 0.8103286384976526, 'f1': 0.7863325740318907, 'number': 1065} 0.7112 0.7697 0.7393 0.8036

Framework versions