<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
scenario-kd_weight_copy-data-smsa-model-xlmr_base_trained
This model is a fine-tuned version of haryoaw/scenario-normal-finetune-clf-data-smsa-model-xlm-roberta-base on the smsa dataset. It achieves the following results on the evaluation set:
- Loss: 0.6281
- Accuracy: 0.9063
- F1: 0.8692
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6969
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.29 | 100 | 1.6376 | 0.8762 | 0.8366 |
No log | 0.58 | 200 | 0.9254 | 0.9016 | 0.8676 |
No log | 0.87 | 300 | 1.1149 | 0.9056 | 0.8673 |
No log | 1.16 | 400 | 0.9098 | 0.9127 | 0.8603 |
1.156 | 1.45 | 500 | 0.8235 | 0.9143 | 0.8710 |
1.156 | 1.74 | 600 | 0.7765 | 0.9087 | 0.8638 |
1.156 | 2.03 | 700 | 0.7826 | 0.9040 | 0.8611 |
1.156 | 2.33 | 800 | 0.8526 | 0.9151 | 0.8755 |
1.156 | 2.62 | 900 | 0.7667 | 0.9103 | 0.8766 |
0.5493 | 2.91 | 1000 | 0.9115 | 0.9024 | 0.8615 |
0.5493 | 3.2 | 1100 | 0.7453 | 0.9063 | 0.8651 |
0.5493 | 3.49 | 1200 | 0.6839 | 0.9167 | 0.8789 |
0.5493 | 3.78 | 1300 | 0.5967 | 0.9119 | 0.8714 |
0.5493 | 4.07 | 1400 | 0.6695 | 0.9167 | 0.8714 |
0.4097 | 4.36 | 1500 | 0.6204 | 0.9159 | 0.8779 |
0.4097 | 4.65 | 1600 | 0.5870 | 0.9246 | 0.8896 |
0.4097 | 4.94 | 1700 | 0.7656 | 0.9167 | 0.8812 |
0.4097 | 5.23 | 1800 | 0.9198 | 0.9111 | 0.8785 |
0.4097 | 5.52 | 1900 | 0.6545 | 0.9111 | 0.8713 |
0.3397 | 5.81 | 2000 | 0.6778 | 0.9095 | 0.8788 |
0.3397 | 6.1 | 2100 | 0.5985 | 0.9087 | 0.8656 |
0.3397 | 6.4 | 2200 | 0.6263 | 0.9087 | 0.8704 |
0.3397 | 6.69 | 2300 | 0.6875 | 0.9032 | 0.8543 |
0.3397 | 6.98 | 2400 | 0.5157 | 0.9111 | 0.8724 |
0.2927 | 7.27 | 2500 | 0.5375 | 0.9111 | 0.8687 |
0.2927 | 7.56 | 2600 | 0.5682 | 0.9143 | 0.8809 |
0.2927 | 7.85 | 2700 | 0.5866 | 0.9151 | 0.8789 |
0.2927 | 8.14 | 2800 | 0.5692 | 0.9159 | 0.8741 |
0.2927 | 8.43 | 2900 | 0.5413 | 0.9183 | 0.8824 |
0.259 | 8.72 | 3000 | 0.6369 | 0.9127 | 0.8790 |
0.259 | 9.01 | 3100 | 0.6281 | 0.9063 | 0.8692 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3