<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
MammoLLM
This model is a fine-tuned version of gpt2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9172
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5202 | 0.62 | 500 | 1.1041 |
1.1505 | 1.24 | 1000 | 1.0581 |
1.1018 | 1.87 | 1500 | 1.0286 |
1.0694 | 2.49 | 2000 | 1.0166 |
1.0574 | 3.11 | 2500 | 1.0041 |
1.0351 | 3.73 | 3000 | 0.9909 |
1.0193 | 4.36 | 3500 | 0.9865 |
1.0137 | 4.98 | 4000 | 0.9799 |
0.993 | 5.6 | 4500 | 0.9745 |
0.9813 | 6.22 | 5000 | 0.9632 |
0.9728 | 6.85 | 5500 | 0.9573 |
0.9534 | 7.47 | 6000 | 0.9521 |
0.9474 | 8.09 | 6500 | 0.9481 |
0.9264 | 8.71 | 7000 | 0.9405 |
0.9099 | 9.33 | 7500 | 0.9365 |
0.9017 | 9.96 | 8000 | 0.9292 |
0.8735 | 10.58 | 8500 | 0.9267 |
0.8623 | 11.2 | 9000 | 0.9268 |
0.8444 | 11.82 | 9500 | 0.9168 |
0.8205 | 12.45 | 10000 | 0.9148 |
0.8111 | 13.07 | 10500 | 0.9129 |
0.7842 | 13.69 | 11000 | 0.9129 |
0.767 | 14.31 | 11500 | 0.9138 |
0.759 | 14.93 | 12000 | 0.9094 |
0.7329 | 15.56 | 12500 | 0.9109 |
0.7261 | 16.18 | 13000 | 0.9145 |
0.7121 | 16.8 | 13500 | 0.9145 |
0.7038 | 17.42 | 14000 | 0.9161 |
0.699 | 18.05 | 14500 | 0.9167 |
0.6902 | 18.67 | 15000 | 0.9169 |
0.6883 | 19.29 | 15500 | 0.9172 |
0.6873 | 19.91 | 16000 | 0.9172 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.3
- Tokenizers 0.13.3