<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
Whisper finetuned for ceb
This model is a fine-tuned version of openai/whisper-tiny on the Fleurs Ceb subset dataset. It achieves the following results on the evaluation set:
- eval_loss: 4.0524
- eval_wer: 117.2075
- eval_wer_un_norm: 114.6770
- eval_runtime: 269.0426
- eval_samples_per_second: 2.011
- eval_steps_per_second: 0.253
- epoch: 0.93
- step: 200
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1