<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
twitter-roberta-base-sentiment-latest-finetuned-FG-SINGLE_SENTENCE-NEWS
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.2822
- Accuracy: 0.6305
- F1: 0.6250
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 321 | 0.9646 | 0.5624 | 0.4048 |
0.9537 | 2.0 | 642 | 0.9474 | 0.5644 | 0.4176 |
0.9537 | 3.0 | 963 | 0.9008 | 0.5903 | 0.5240 |
0.858 | 4.0 | 1284 | 0.9939 | 0.5999 | 0.5846 |
0.5908 | 5.0 | 1605 | 1.0947 | 0.6108 | 0.6026 |
0.5908 | 6.0 | 1926 | 1.2507 | 0.5740 | 0.5823 |
0.3676 | 7.0 | 2247 | 1.4717 | 0.6128 | 0.6017 |
0.2246 | 8.0 | 2568 | 1.6726 | 0.5965 | 0.6003 |
0.2246 | 9.0 | 2889 | 1.8041 | 0.6380 | 0.6298 |
0.1468 | 10.0 | 3210 | 1.9796 | 0.6053 | 0.6026 |
0.1161 | 11.0 | 3531 | 2.0988 | 0.6237 | 0.6202 |
0.1161 | 12.0 | 3852 | 2.4171 | 0.5944 | 0.5989 |
0.0916 | 13.0 | 4173 | 2.3326 | 0.6374 | 0.6288 |
0.0916 | 14.0 | 4494 | 2.5472 | 0.6360 | 0.6245 |
0.0661 | 15.0 | 4815 | 2.9127 | 0.6176 | 0.6187 |
0.0454 | 16.0 | 5136 | 2.9133 | 0.6326 | 0.6276 |
0.0454 | 17.0 | 5457 | 3.1299 | 0.6210 | 0.6162 |
0.0337 | 18.0 | 5778 | 3.1828 | 0.6224 | 0.6188 |
0.0223 | 19.0 | 6099 | 3.2655 | 0.6299 | 0.6223 |
0.0223 | 20.0 | 6420 | 3.2822 | 0.6305 | 0.6250 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.9.1
- Datasets 1.18.4
- Tokenizers 0.11.6