<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
metal-graphcodebert-base-gpt4-v3
This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:
- Loss: 5.4894
- Accuracy: 0.7783
- Text Start Acc: 0.7724
- Text End Acc: 0.7490
- Code Start Acc: 0.7993
- Code End Acc: 0.7926
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 28
- eval_batch_size: 28
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Text Start Acc | Text End Acc | Code Start Acc | Code End Acc |
---|---|---|---|---|---|---|---|---|
6.085 | 0.03 | 500 | 6.4250 | 0.2513 | 0.2552 | 0.2493 | 0.2546 | 0.2460 |
4.3622 | 0.06 | 1000 | 6.4845 | 0.3826 | 0.3785 | 0.3578 | 0.4048 | 0.3895 |
3.7195 | 0.09 | 1500 | 6.3109 | 0.5014 | 0.4932 | 0.4570 | 0.5354 | 0.5199 |
3.4122 | 0.12 | 2000 | 6.0049 | 0.5719 | 0.5785 | 0.5381 | 0.5946 | 0.5763 |
3.1662 | 0.14 | 2500 | 6.0516 | 0.6142 | 0.6105 | 0.5854 | 0.6360 | 0.6249 |
3.0729 | 0.17 | 3000 | 5.7291 | 0.6480 | 0.6531 | 0.6173 | 0.6656 | 0.6561 |
2.9675 | 0.2 | 3500 | 5.9223 | 0.6478 | 0.6585 | 0.6239 | 0.6648 | 0.6438 |
2.94 | 0.23 | 4000 | 5.8322 | 0.6637 | 0.6746 | 0.6406 | 0.6768 | 0.6626 |
2.8936 | 0.26 | 4500 | 5.7799 | 0.6876 | 0.7013 | 0.6716 | 0.6932 | 0.6845 |
2.8697 | 0.29 | 5000 | 5.9136 | 0.6805 | 0.6763 | 0.6709 | 0.6880 | 0.6867 |
2.793 | 0.32 | 5500 | 5.6892 | 0.7055 | 0.7164 | 0.6785 | 0.7248 | 0.7022 |
2.7748 | 0.35 | 6000 | 5.6964 | 0.7079 | 0.7125 | 0.7034 | 0.7091 | 0.7067 |
2.7162 | 0.37 | 6500 | 5.8504 | 0.6985 | 0.7119 | 0.6784 | 0.6999 | 0.7038 |
2.7423 | 0.4 | 7000 | 5.7123 | 0.7191 | 0.7175 | 0.6877 | 0.7308 | 0.7405 |
2.6836 | 0.43 | 7500 | 5.6872 | 0.7212 | 0.7350 | 0.7081 | 0.7225 | 0.7192 |
2.6458 | 0.46 | 8000 | 5.7051 | 0.7233 | 0.7309 | 0.7210 | 0.7282 | 0.7133 |
2.6587 | 0.49 | 8500 | 5.8715 | 0.7060 | 0.7033 | 0.6877 | 0.7148 | 0.7180 |
2.6031 | 0.52 | 9000 | 5.7375 | 0.7331 | 0.7326 | 0.7168 | 0.7446 | 0.7384 |
2.5892 | 0.55 | 9500 | 5.6550 | 0.7420 | 0.7468 | 0.7282 | 0.7501 | 0.7429 |
2.5568 | 0.58 | 10000 | 5.8174 | 0.7191 | 0.7148 | 0.7023 | 0.7360 | 0.7232 |
2.5495 | 0.61 | 10500 | 5.8085 | 0.7237 | 0.7212 | 0.6921 | 0.7399 | 0.7416 |
2.5374 | 0.63 | 11000 | 5.6530 | 0.7377 | 0.7303 | 0.7029 | 0.7601 | 0.7573 |
2.5235 | 0.66 | 11500 | 5.7847 | 0.7222 | 0.7128 | 0.7158 | 0.7310 | 0.7295 |
2.5166 | 0.69 | 12000 | 5.5209 | 0.7452 | 0.7507 | 0.7353 | 0.7577 | 0.7370 |
2.4729 | 0.72 | 12500 | 5.7236 | 0.7329 | 0.7276 | 0.7171 | 0.7460 | 0.7407 |
2.4768 | 0.75 | 13000 | 5.7680 | 0.7371 | 0.7299 | 0.7159 | 0.7580 | 0.7444 |
2.4863 | 0.78 | 13500 | 5.7128 | 0.7493 | 0.7442 | 0.7307 | 0.7620 | 0.7601 |
2.4682 | 0.81 | 14000 | 5.6488 | 0.7547 | 0.7545 | 0.7435 | 0.7601 | 0.7608 |
2.4352 | 0.84 | 14500 | 5.6568 | 0.7510 | 0.7507 | 0.7446 | 0.7593 | 0.7494 |
2.4305 | 0.87 | 15000 | 5.6023 | 0.7550 | 0.7582 | 0.7452 | 0.7671 | 0.7495 |
2.4462 | 0.89 | 15500 | 5.6579 | 0.7510 | 0.7472 | 0.7296 | 0.7616 | 0.7656 |
2.4126 | 0.92 | 16000 | 5.5977 | 0.7625 | 0.7561 | 0.7418 | 0.7785 | 0.7738 |
2.4365 | 0.95 | 16500 | 5.5893 | 0.7624 | 0.7525 | 0.7401 | 0.7805 | 0.7767 |
2.4131 | 0.98 | 17000 | 5.5119 | 0.7767 | 0.7693 | 0.7632 | 0.7912 | 0.7832 |
2.3171 | 1.01 | 17500 | 5.6282 | 0.7658 | 0.7550 | 0.7540 | 0.7891 | 0.7654 |
2.3331 | 1.04 | 18000 | 5.6226 | 0.7603 | 0.7581 | 0.7504 | 0.7611 | 0.7718 |
2.3776 | 1.07 | 18500 | 5.7404 | 0.7460 | 0.7265 | 0.7182 | 0.7671 | 0.7722 |
2.3775 | 1.1 | 19000 | 5.4884 | 0.7724 | 0.7650 | 0.7613 | 0.7818 | 0.7816 |
2.3436 | 1.12 | 19500 | 5.6141 | 0.7539 | 0.7540 | 0.7324 | 0.7622 | 0.7671 |
2.3222 | 1.15 | 20000 | 5.6792 | 0.7586 | 0.7578 | 0.7326 | 0.7698 | 0.7742 |
2.3382 | 1.18 | 20500 | 5.6713 | 0.7604 | 0.7462 | 0.7436 | 0.7791 | 0.7729 |
2.3127 | 1.21 | 21000 | 5.5783 | 0.7748 | 0.7729 | 0.7712 | 0.7787 | 0.7763 |
2.3698 | 1.24 | 21500 | 5.4640 | 0.7786 | 0.7854 | 0.7711 | 0.7768 | 0.7812 |
2.303 | 1.27 | 22000 | 5.5976 | 0.7595 | 0.7513 | 0.7473 | 0.7654 | 0.7741 |
2.2949 | 1.3 | 22500 | 5.6816 | 0.7531 | 0.7394 | 0.7186 | 0.7745 | 0.7798 |
2.3185 | 1.33 | 23000 | 5.5256 | 0.7781 | 0.7767 | 0.7530 | 0.7923 | 0.7905 |
2.2885 | 1.36 | 23500 | 5.5717 | 0.7599 | 0.7509 | 0.7470 | 0.7725 | 0.7693 |
2.3125 | 1.38 | 24000 | 5.5428 | 0.7674 | 0.7624 | 0.7460 | 0.7814 | 0.7798 |
2.2726 | 1.41 | 24500 | 5.5754 | 0.7622 | 0.7767 | 0.7408 | 0.7660 | 0.7653 |
2.3074 | 1.44 | 25000 | 5.4123 | 0.7848 | 0.7901 | 0.7803 | 0.7849 | 0.7840 |
2.275 | 1.47 | 25500 | 5.5832 | 0.7614 | 0.7577 | 0.7373 | 0.7808 | 0.7697 |
2.2766 | 1.5 | 26000 | 5.5349 | 0.7668 | 0.7616 | 0.7377 | 0.7812 | 0.7869 |
2.2911 | 1.53 | 26500 | 5.5479 | 0.7600 | 0.7588 | 0.7389 | 0.7759 | 0.7664 |
2.2968 | 1.56 | 27000 | 5.6977 | 0.7486 | 0.7354 | 0.7203 | 0.7683 | 0.7705 |
2.2763 | 1.59 | 27500 | 5.4139 | 0.7824 | 0.7710 | 0.7625 | 0.7985 | 0.7977 |
2.296 | 1.61 | 28000 | 5.3677 | 0.7812 | 0.7885 | 0.7625 | 0.7942 | 0.7795 |
2.281 | 1.64 | 28500 | 5.4631 | 0.7737 | 0.7703 | 0.7652 | 0.7788 | 0.7803 |
2.2505 | 1.67 | 29000 | 5.6172 | 0.7621 | 0.7513 | 0.7371 | 0.7828 | 0.7773 |
2.2856 | 1.7 | 29500 | 5.5993 | 0.7593 | 0.7556 | 0.7342 | 0.7732 | 0.7742 |
2.2962 | 1.73 | 30000 | 5.5468 | 0.7655 | 0.7595 | 0.7297 | 0.7833 | 0.7896 |
2.2636 | 1.76 | 30500 | 5.5076 | 0.7746 | 0.7704 | 0.7534 | 0.7902 | 0.7845 |
2.2386 | 1.79 | 31000 | 5.6392 | 0.7611 | 0.7515 | 0.7412 | 0.7763 | 0.7755 |
2.2289 | 1.82 | 31500 | 5.6283 | 0.7592 | 0.7494 | 0.7372 | 0.7751 | 0.7752 |
2.2608 | 1.85 | 32000 | 5.4233 | 0.7842 | 0.7933 | 0.7737 | 0.7837 | 0.7860 |
2.2529 | 1.87 | 32500 | 5.4549 | 0.7838 | 0.7815 | 0.7622 | 0.7985 | 0.7928 |
2.2548 | 1.9 | 33000 | 5.4714 | 0.7806 | 0.7753 | 0.7582 | 0.8004 | 0.7886 |
2.2144 | 1.93 | 33500 | 5.4302 | 0.7828 | 0.7736 | 0.7605 | 0.8025 | 0.7947 |
2.2533 | 1.96 | 34000 | 5.5000 | 0.7739 | 0.7661 | 0.7546 | 0.7876 | 0.7875 |
2.2362 | 1.99 | 34500 | 5.5129 | 0.7727 | 0.7629 | 0.7494 | 0.7869 | 0.7915 |
2.2086 | 2.02 | 35000 | 5.5991 | 0.7624 | 0.7551 | 0.7324 | 0.7812 | 0.7812 |
2.2194 | 2.05 | 35500 | 5.4611 | 0.7889 | 0.7807 | 0.7638 | 0.8081 | 0.8030 |
2.1732 | 2.08 | 36000 | 5.5642 | 0.7674 | 0.7503 | 0.7431 | 0.7908 | 0.7854 |
2.1972 | 2.11 | 36500 | 5.4433 | 0.7834 | 0.7806 | 0.7618 | 0.7981 | 0.7931 |
2.2376 | 2.13 | 37000 | 5.4670 | 0.7775 | 0.7755 | 0.7640 | 0.7873 | 0.7833 |
2.1921 | 2.16 | 37500 | 5.4935 | 0.7735 | 0.7686 | 0.7525 | 0.7817 | 0.7912 |
2.1789 | 2.19 | 38000 | 5.4306 | 0.7831 | 0.7782 | 0.7625 | 0.7985 | 0.7933 |
2.1649 | 2.22 | 38500 | 5.3896 | 0.7866 | 0.7859 | 0.7676 | 0.7936 | 0.7995 |
2.1872 | 2.25 | 39000 | 5.5065 | 0.7766 | 0.7669 | 0.7530 | 0.7928 | 0.7937 |
2.1894 | 2.28 | 39500 | 5.3958 | 0.7885 | 0.7878 | 0.7720 | 0.7987 | 0.7955 |
2.1978 | 2.31 | 40000 | 5.4631 | 0.7788 | 0.7707 | 0.7583 | 0.7927 | 0.7933 |
2.1768 | 2.34 | 40500 | 5.3886 | 0.7838 | 0.7795 | 0.7592 | 0.8006 | 0.7959 |
2.1812 | 2.36 | 41000 | 5.5139 | 0.7712 | 0.7557 | 0.7446 | 0.7943 | 0.7903 |
2.1793 | 2.39 | 41500 | 5.5179 | 0.7758 | 0.7712 | 0.7577 | 0.7881 | 0.7863 |
2.1746 | 2.42 | 42000 | 5.4554 | 0.7798 | 0.7791 | 0.7665 | 0.7879 | 0.7857 |
2.1891 | 2.45 | 42500 | 5.4976 | 0.7794 | 0.7729 | 0.7539 | 0.7956 | 0.7951 |
2.1623 | 2.48 | 43000 | 5.5901 | 0.7645 | 0.7530 | 0.7326 | 0.7912 | 0.7812 |
2.1794 | 2.51 | 43500 | 5.5192 | 0.7733 | 0.7682 | 0.7416 | 0.7941 | 0.7894 |
2.1593 | 2.54 | 44000 | 5.5453 | 0.7709 | 0.7673 | 0.7390 | 0.7911 | 0.7862 |
2.1414 | 2.57 | 44500 | 5.5045 | 0.7755 | 0.7676 | 0.7471 | 0.7964 | 0.7910 |
2.1342 | 2.6 | 45000 | 5.4696 | 0.7795 | 0.7711 | 0.7530 | 0.7980 | 0.7959 |
2.1514 | 2.62 | 45500 | 5.5181 | 0.7729 | 0.7661 | 0.7377 | 0.7953 | 0.7926 |
2.1307 | 2.65 | 46000 | 5.4156 | 0.7850 | 0.7814 | 0.7607 | 0.8002 | 0.7979 |
2.173 | 2.68 | 46500 | 5.4603 | 0.7842 | 0.7750 | 0.7546 | 0.8043 | 0.8027 |
2.2072 | 2.71 | 47000 | 5.4345 | 0.7864 | 0.7793 | 0.7605 | 0.8053 | 0.8004 |
2.1851 | 2.74 | 47500 | 5.4575 | 0.7846 | 0.7778 | 0.7572 | 0.8062 | 0.7973 |
2.1698 | 2.77 | 48000 | 5.4666 | 0.7806 | 0.7772 | 0.7523 | 0.7975 | 0.7953 |
2.1684 | 2.8 | 48500 | 5.4788 | 0.7799 | 0.7743 | 0.7525 | 0.7992 | 0.7938 |
2.167 | 2.83 | 49000 | 5.4683 | 0.7811 | 0.7822 | 0.7571 | 0.7953 | 0.7896 |
2.1202 | 2.85 | 49500 | 5.4364 | 0.7859 | 0.7852 | 0.7631 | 0.7985 | 0.7970 |
2.1699 | 2.88 | 50000 | 5.4853 | 0.7789 | 0.7722 | 0.7460 | 0.8023 | 0.7949 |
2.165 | 2.91 | 50500 | 5.4848 | 0.7793 | 0.7759 | 0.7517 | 0.7977 | 0.7921 |
2.1757 | 2.94 | 51000 | 5.4779 | 0.7802 | 0.7761 | 0.7511 | 0.7992 | 0.7942 |
2.1343 | 2.97 | 51500 | 5.5095 | 0.7763 | 0.7697 | 0.7453 | 0.7986 | 0.7917 |
2.1312 | 3.0 | 52000 | 5.4895 | 0.7783 | 0.7724 | 0.7490 | 0.7993 | 0.7926 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3