<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
passive_invoices_v2.1
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0757
- Precision: 0.9023
- Recall: 0.8992
- F1: 0.9007
- Accuracy: 0.9834
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.15 | 100 | 0.9924 | 0.3274 | 0.0121 | 0.0233 | 0.7836 |
No log | 0.29 | 200 | 0.6875 | 0.3598 | 0.2755 | 0.3121 | 0.8390 |
No log | 0.44 | 300 | 0.4979 | 0.6164 | 0.5318 | 0.5710 | 0.9059 |
No log | 0.59 | 400 | 0.3577 | 0.7126 | 0.6734 | 0.6924 | 0.9354 |
0.8955 | 0.74 | 500 | 0.2679 | 0.7985 | 0.7444 | 0.7705 | 0.9547 |
0.8955 | 0.88 | 600 | 0.2221 | 0.7953 | 0.7742 | 0.7846 | 0.9576 |
0.8955 | 1.03 | 700 | 0.1954 | 0.8136 | 0.8025 | 0.8080 | 0.9602 |
0.8955 | 1.18 | 800 | 0.1668 | 0.8403 | 0.8224 | 0.8313 | 0.9677 |
0.8955 | 1.32 | 900 | 0.1513 | 0.8565 | 0.8452 | 0.8508 | 0.9717 |
0.2515 | 1.47 | 1000 | 0.1414 | 0.8651 | 0.8536 | 0.8593 | 0.9727 |
0.2515 | 1.62 | 1100 | 0.1276 | 0.8737 | 0.8580 | 0.8657 | 0.9747 |
0.2515 | 1.76 | 1200 | 0.1252 | 0.8741 | 0.8523 | 0.8630 | 0.9747 |
0.2515 | 1.91 | 1300 | 0.1193 | 0.8875 | 0.8580 | 0.8725 | 0.9766 |
0.2515 | 2.06 | 1400 | 0.1157 | 0.8807 | 0.8674 | 0.8740 | 0.9773 |
0.1523 | 2.21 | 1500 | 0.1096 | 0.8676 | 0.8759 | 0.8717 | 0.9769 |
0.1523 | 2.35 | 1600 | 0.1014 | 0.8862 | 0.8772 | 0.8817 | 0.9792 |
0.1523 | 2.5 | 1700 | 0.1002 | 0.8860 | 0.8823 | 0.8841 | 0.9800 |
0.1523 | 2.65 | 1800 | 0.0973 | 0.8772 | 0.8788 | 0.8780 | 0.9792 |
0.1523 | 2.79 | 1900 | 0.0960 | 0.8936 | 0.8816 | 0.8876 | 0.9797 |
0.1136 | 2.94 | 2000 | 0.0931 | 0.8816 | 0.8797 | 0.8806 | 0.9800 |
0.1136 | 3.09 | 2100 | 0.0933 | 0.8807 | 0.8869 | 0.8838 | 0.9794 |
0.1136 | 3.24 | 2200 | 0.0902 | 0.8952 | 0.8834 | 0.8892 | 0.9811 |
0.1136 | 3.38 | 2300 | 0.0899 | 0.8982 | 0.8952 | 0.8967 | 0.9818 |
0.1136 | 3.53 | 2400 | 0.0862 | 0.8929 | 0.8897 | 0.8913 | 0.9815 |
0.0953 | 3.68 | 2500 | 0.0906 | 0.9009 | 0.8768 | 0.8887 | 0.9807 |
0.0953 | 3.82 | 2600 | 0.0839 | 0.8975 | 0.8959 | 0.8967 | 0.9825 |
0.0953 | 3.97 | 2700 | 0.0832 | 0.8992 | 0.8972 | 0.8982 | 0.9826 |
0.0953 | 4.12 | 2800 | 0.0806 | 0.8896 | 0.8871 | 0.8884 | 0.9817 |
0.0953 | 4.26 | 2900 | 0.0809 | 0.8950 | 0.8932 | 0.8941 | 0.9822 |
0.0843 | 4.41 | 3000 | 0.0809 | 0.8884 | 0.8983 | 0.8933 | 0.9819 |
0.0843 | 4.56 | 3100 | 0.0764 | 0.8982 | 0.8932 | 0.8957 | 0.9826 |
0.0843 | 4.71 | 3200 | 0.0760 | 0.8975 | 0.8959 | 0.8967 | 0.9829 |
0.0843 | 4.85 | 3300 | 0.0760 | 0.9000 | 0.8998 | 0.8999 | 0.9830 |
0.0843 | 5.0 | 3400 | 0.0769 | 0.9001 | 0.8983 | 0.8992 | 0.9828 |
0.0632 | 5.15 | 3500 | 0.0789 | 0.9049 | 0.9011 | 0.9030 | 0.9831 |
0.0632 | 5.29 | 3600 | 0.0776 | 0.8980 | 0.9014 | 0.8997 | 0.9826 |
0.0632 | 5.44 | 3700 | 0.0774 | 0.9050 | 0.9016 | 0.9033 | 0.9836 |
0.0632 | 5.59 | 3800 | 0.0763 | 0.9029 | 0.9009 | 0.9019 | 0.9835 |
0.0632 | 5.74 | 3900 | 0.0759 | 0.9050 | 0.9005 | 0.9028 | 0.9837 |
0.0653 | 5.88 | 4000 | 0.0757 | 0.9023 | 0.8992 | 0.9007 | 0.9834 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3