ESM-2 QLoRA for Post Translational Modification
"eval_loss": 0.28556737303733826,
"eval_accuracy": 0.9762591331328516,
"eval_auc": 0.8833701456278934,
"eval_f1": 0.1542571794425746,
"eval_mcc": 0.25511446421928063,
"eval_precision": 0.08547382057474782,
"eval_recall": 0.7899691877651231,
Using the Model
from transformers import AutoModelForTokenClassification, AutoTokenizer
from peft import PeftModel
import torch
model_path = "AmelieSchreiber/esm2_t12_35M_ptm_qlora_2100K"
base_model_path = "facebook/esm2_t12_35M_UR50D"
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
loaded_model = PeftModel.from_pretrained(base_model, model_path)
loaded_model.eval()
loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path)
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT"
inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
with torch.no_grad():
logits = loaded_model(**inputs).logits
tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
predictions = torch.argmax(logits, dim=2)
id2label = {
0: "No ptm site",
1: "ptm site"
}
for token, prediction in zip(tokens, predictions[0].numpy()):
if token not in ['<pad>', '<cls>', '<eos>']:
print((token, id2label[prediction]))