<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
scenario-kd_weight_copy_before_finetune-data-smsa-model-xlmr_base_trained
This model is a fine-tuned version of xlm-roberta-base on the smsa dataset. It achieves the following results on the evaluation set:
- Loss: 0.5455
- Accuracy: 0.9198
- F1: 0.8832
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6969
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.29 | 100 | 3.3317 | 0.8 | 0.7172 |
No log | 0.58 | 200 | 1.7226 | 0.8794 | 0.8406 |
No log | 0.87 | 300 | 1.3735 | 0.8944 | 0.8551 |
No log | 1.16 | 400 | 1.1817 | 0.8905 | 0.8500 |
2.267 | 1.45 | 500 | 1.0478 | 0.9071 | 0.8711 |
2.267 | 1.74 | 600 | 0.9623 | 0.9095 | 0.8725 |
2.267 | 2.03 | 700 | 1.3815 | 0.8905 | 0.8412 |
2.267 | 2.33 | 800 | 0.8902 | 0.9119 | 0.8758 |
2.267 | 2.62 | 900 | 1.0658 | 0.9024 | 0.8600 |
0.9245 | 2.91 | 1000 | 0.8270 | 0.9135 | 0.8767 |
0.9245 | 3.2 | 1100 | 0.8174 | 0.9056 | 0.8632 |
0.9245 | 3.49 | 1200 | 0.9220 | 0.9008 | 0.8604 |
0.9245 | 3.78 | 1300 | 0.8459 | 0.9063 | 0.8685 |
0.9245 | 4.07 | 1400 | 0.7925 | 0.9111 | 0.8748 |
0.5673 | 4.36 | 1500 | 1.0786 | 0.9040 | 0.8712 |
0.5673 | 4.65 | 1600 | 0.8407 | 0.9127 | 0.8860 |
0.5673 | 4.94 | 1700 | 0.7915 | 0.9119 | 0.8714 |
0.5673 | 5.23 | 1800 | 0.8354 | 0.9143 | 0.8751 |
0.5673 | 5.52 | 1900 | 0.6835 | 0.9111 | 0.8729 |
0.4577 | 5.81 | 2000 | 0.6577 | 0.9135 | 0.8837 |
0.4577 | 6.1 | 2100 | 0.6377 | 0.9079 | 0.8684 |
0.4577 | 6.4 | 2200 | 0.6298 | 0.9278 | 0.8953 |
0.4577 | 6.69 | 2300 | 0.6444 | 0.9119 | 0.8650 |
0.4577 | 6.98 | 2400 | 0.6053 | 0.9111 | 0.8738 |
0.3651 | 7.27 | 2500 | 0.6729 | 0.9175 | 0.8868 |
0.3651 | 7.56 | 2600 | 0.6708 | 0.9143 | 0.8809 |
0.3651 | 7.85 | 2700 | 0.8124 | 0.9103 | 0.8744 |
0.3651 | 8.14 | 2800 | 0.6252 | 0.9183 | 0.8759 |
0.3651 | 8.43 | 2900 | 0.7146 | 0.9214 | 0.8890 |
0.3294 | 8.72 | 3000 | 0.6384 | 0.9206 | 0.8836 |
0.3294 | 9.01 | 3100 | 0.7189 | 0.9143 | 0.8771 |
0.3294 | 9.3 | 3200 | 0.6375 | 0.9079 | 0.8672 |
0.3294 | 9.59 | 3300 | 0.6466 | 0.9167 | 0.8800 |
0.3294 | 9.88 | 3400 | 0.6280 | 0.9175 | 0.8806 |
0.277 | 10.17 | 3500 | 0.5130 | 0.9190 | 0.8788 |
0.277 | 10.47 | 3600 | 0.5772 | 0.9135 | 0.8724 |
0.277 | 10.76 | 3700 | 0.5455 | 0.9198 | 0.8832 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3