<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
cam16-no-train-mask-final-50-epochs
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the image_folder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2177
- Accuracy: 0.9352
- F1: 0.9351
- Precision: 0.9365
- Recall: 0.9352
- Balanced Acc: 0.9352
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Balanced Acc |
---|---|---|---|---|---|---|---|---|
0.6465 | 1.0 | 6 | 0.5797 | 0.8796 | 0.8791 | 0.8861 | 0.8796 | 0.8796 |
0.5379 | 2.0 | 12 | 0.4745 | 0.8611 | 0.8610 | 0.8622 | 0.8611 | 0.8611 |
0.4414 | 3.0 | 18 | 0.4000 | 0.8981 | 0.8977 | 0.9050 | 0.8981 | 0.8981 |
0.3759 | 4.0 | 24 | 0.3504 | 0.8981 | 0.8977 | 0.9050 | 0.8981 | 0.8981 |
0.3192 | 5.0 | 30 | 0.3155 | 0.9074 | 0.9071 | 0.9125 | 0.9074 | 0.9074 |
0.2756 | 6.0 | 36 | 0.2875 | 0.9167 | 0.9165 | 0.9203 | 0.9167 | 0.9167 |
0.2525 | 7.0 | 42 | 0.2795 | 0.8981 | 0.8981 | 0.8983 | 0.8981 | 0.8981 |
0.243 | 8.0 | 48 | 0.2654 | 0.8981 | 0.8981 | 0.8983 | 0.8981 | 0.8981 |
0.2142 | 9.0 | 54 | 0.2557 | 0.9259 | 0.9258 | 0.9283 | 0.9259 | 0.9259 |
0.2131 | 10.0 | 60 | 0.2736 | 0.9074 | 0.9074 | 0.9074 | 0.9074 | 0.9074 |
0.1895 | 11.0 | 66 | 0.2492 | 0.9259 | 0.9258 | 0.9283 | 0.9259 | 0.9259 |
0.1867 | 12.0 | 72 | 0.2379 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.1713 | 13.0 | 78 | 0.2339 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.1633 | 14.0 | 84 | 0.2339 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.147 | 15.0 | 90 | 0.2340 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.1586 | 16.0 | 96 | 0.3180 | 0.8611 | 0.8605 | 0.8673 | 0.8611 | 0.8611 |
0.1506 | 17.0 | 102 | 0.2321 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.1571 | 18.0 | 108 | 0.2956 | 0.8796 | 0.8794 | 0.8829 | 0.8796 | 0.8796 |
0.1506 | 19.0 | 114 | 0.2290 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.1523 | 20.0 | 120 | 0.2335 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.1544 | 21.0 | 126 | 0.2327 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.1396 | 22.0 | 132 | 0.2232 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.135 | 23.0 | 138 | 0.2352 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.1335 | 24.0 | 144 | 0.2268 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.1448 | 25.0 | 150 | 0.2379 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.1136 | 26.0 | 156 | 0.2211 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.1231 | 27.0 | 162 | 0.2346 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.1103 | 28.0 | 168 | 0.2370 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.1216 | 29.0 | 174 | 0.2329 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.0962 | 30.0 | 180 | 0.2425 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.0983 | 31.0 | 186 | 0.2296 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0963 | 32.0 | 192 | 0.2144 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0895 | 33.0 | 198 | 0.2224 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.088 | 34.0 | 204 | 0.2304 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.1029 | 35.0 | 210 | 0.2314 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.1106 | 36.0 | 216 | 0.2195 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.1015 | 37.0 | 222 | 0.2173 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0845 | 38.0 | 228 | 0.2248 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.0864 | 39.0 | 234 | 0.2140 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0901 | 40.0 | 240 | 0.2295 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0999 | 41.0 | 246 | 0.2436 | 0.9259 | 0.9259 | 0.9265 | 0.9259 | 0.9259 |
0.0922 | 42.0 | 252 | 0.2354 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0851 | 43.0 | 258 | 0.2220 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0802 | 44.0 | 264 | 0.2240 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0714 | 45.0 | 270 | 0.2275 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.088 | 46.0 | 276 | 0.2271 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0869 | 47.0 | 282 | 0.2242 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0895 | 48.0 | 288 | 0.2209 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0831 | 49.0 | 294 | 0.2182 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
0.0894 | 50.0 | 300 | 0.2177 | 0.9352 | 0.9351 | 0.9365 | 0.9352 | 0.9352 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3