<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
scenario-no_kd_weight_copy-data-indolem_sentiment-model-xlm-roberta-base_trained
This model is a fine-tuned version of xlm-roberta-base on the indolem_sentiment dataset. It achieves the following results on the evaluation set:
- Loss: 1.1793
- Accuracy: 0.8321
- F1: 0.6854
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6969
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.88 | 100 | 0.6818 | 0.6466 | 0.6137 |
No log | 1.75 | 200 | 0.4083 | 0.8045 | 0.675 |
No log | 2.63 | 300 | 0.4782 | 0.7870 | 0.7018 |
No log | 3.51 | 400 | 0.4200 | 0.8120 | 0.6377 |
0.342 | 4.39 | 500 | 0.4516 | 0.8346 | 0.7203 |
0.342 | 5.26 | 600 | 0.8387 | 0.8396 | 0.7037 |
0.342 | 6.14 | 700 | 0.6095 | 0.8647 | 0.7589 |
0.342 | 7.02 | 800 | 0.6555 | 0.8596 | 0.7667 |
0.342 | 7.89 | 900 | 0.7089 | 0.8421 | 0.7709 |
0.1124 | 8.77 | 1000 | 0.8602 | 0.8396 | 0.7288 |
0.1124 | 9.65 | 1100 | 0.7809 | 0.8496 | 0.7794 |
0.1124 | 10.53 | 1200 | 0.9068 | 0.8571 | 0.7865 |
0.1124 | 11.4 | 1300 | 0.8547 | 0.8546 | 0.7315 |
0.1124 | 12.28 | 1400 | 0.8175 | 0.8546 | 0.7521 |
0.0382 | 13.16 | 1500 | 1.1699 | 0.8396 | 0.7037 |
0.0382 | 14.04 | 1600 | 0.8574 | 0.8271 | 0.7137 |
0.0382 | 14.91 | 1700 | 0.8383 | 0.8346 | 0.7676 |
0.0382 | 15.79 | 1800 | 0.6734 | 0.8421 | 0.7014 |
0.0382 | 16.67 | 1900 | 0.9742 | 0.8471 | 0.7798 |
0.0322 | 17.54 | 2000 | 0.9638 | 0.8546 | 0.7698 |
0.0322 | 18.42 | 2100 | 0.8489 | 0.8672 | 0.7764 |
0.0322 | 19.3 | 2200 | 1.1684 | 0.8471 | 0.7749 |
0.0322 | 20.18 | 2300 | 0.9654 | 0.8521 | 0.7592 |
0.0322 | 21.05 | 2400 | 1.1021 | 0.8371 | 0.6890 |
0.0272 | 21.93 | 2500 | 0.7941 | 0.8747 | 0.7917 |
0.0272 | 22.81 | 2600 | 1.0242 | 0.8571 | 0.7692 |
0.0272 | 23.68 | 2700 | 1.0652 | 0.8471 | 0.7359 |
0.0272 | 24.56 | 2800 | 0.8950 | 0.8446 | 0.7281 |
0.0272 | 25.44 | 2900 | 1.0617 | 0.8296 | 0.6852 |
0.0227 | 26.32 | 3000 | 1.2601 | 0.8371 | 0.6766 |
0.0227 | 27.19 | 3100 | 1.1990 | 0.8622 | 0.7556 |
0.0227 | 28.07 | 3200 | 0.9990 | 0.8321 | 0.7433 |
0.0227 | 28.95 | 3300 | 1.0540 | 0.8571 | 0.7765 |
0.0227 | 29.82 | 3400 | 1.2783 | 0.8446 | 0.7232 |
0.0147 | 30.7 | 3500 | 1.1020 | 0.8571 | 0.7816 |
0.0147 | 31.58 | 3600 | 1.0771 | 0.8571 | 0.7349 |
0.0147 | 32.46 | 3700 | 0.9544 | 0.8672 | 0.7725 |
0.0147 | 33.33 | 3800 | 0.9524 | 0.8371 | 0.7005 |
0.0147 | 34.21 | 3900 | 0.8062 | 0.8296 | 0.7344 |
0.0275 | 35.09 | 4000 | 1.1793 | 0.8321 | 0.6854 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3