<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
PE_fb_w_v2
This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
-
Accuracy: 1.0
-
F1: 1.0
-
Precision: 1.0
-
Recall: 1.0
-
Loss: 0.0016
-
Classification Report: precision recall f1-score support
7 1.00 1.00 1.00 18
accuracy 1.00 18 macro avg 1.00 1.00 1.00 18 weighted avg 1.00 1.00 1.00 18
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Accuracy | F1 | Precision | Recall | Validation Loss | Classification Report |
---|---|---|---|---|---|---|---|---|
0.3505 | 1.0 | 452 | 0.8333 | 0.4545 | 0.5 | 0.9167 | 0.3256 | precision recall f1-score support |
1 0.00 0.00 0.00 0
7 1.00 0.83 0.91 18
accuracy 0.83 18
macro avg 0.50 0.42 0.45 18 weighted avg 1.00 0.83 0.91 18 | | 0.0006 | 2.0 | 904 | 0.7222 | 0.2097 | 0.25 | 0.9306 | 1.1798 | precision recall f1-score support
0 0.00 0.00 0.00 0
1 0.00 0.00 0.00 0
5 0.00 0.00 0.00 0
7 1.00 0.72 0.84 18
accuracy 0.72 18
macro avg 0.25 0.18 0.21 18 weighted avg 1.00 0.72 0.84 18 | | 0.0359 | 3.0 | 1356 | 0.8889 | 0.4706 | 0.5 | 0.9444 | 0.5522 | precision recall f1-score support
5 0.00 0.00 0.00 0
7 1.00 0.89 0.94 18
accuracy 0.89 18
macro avg 0.50 0.44 0.47 18 weighted avg 1.00 0.89 0.94 18 | | 0.0057 | 4.0 | 1808 | 0.8889 | 0.3137 | 0.3333 | 0.9630 | 0.4023 | precision recall f1-score support
0 0.00 0.00 0.00 0
6 0.00 0.00 0.00 0
7 1.00 0.89 0.94 18
accuracy 0.89 18
macro avg 0.33 0.30 0.31 18 weighted avg 1.00 0.89 0.94 18 | | 0.0972 | 5.0 | 2260 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0117 | precision recall f1-score support
7 1.00 1.00 1.00 18
accuracy 1.00 18
macro avg 1.00 1.00 1.00 18 weighted avg 1.00 1.00 1.00 18 | | 0.0039 | 6.0 | 2712 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0016 | precision recall f1-score support
7 1.00 1.00 1.00 18
accuracy 1.00 18
macro avg 1.00 1.00 1.00 18 weighted avg 1.00 1.00 1.00 18 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1