<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
scenario-kd-from-pre-finetune-silver-div-2-data-smsa-model-xlm-roberta-base
This model is a fine-tuned version of xlm-roberta-base on the smsa dataset. It achieves the following results on the evaluation set:
- Loss: 0.6712
- Accuracy: 0.9175
- F1: 0.8720
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6969
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 0.29 | 100 | 3.2781 | 0.7651 | 0.5383 |
No log | 0.58 | 200 | 2.2064 | 0.8516 | 0.8093 |
No log | 0.87 | 300 | 1.7326 | 0.8690 | 0.7949 |
No log | 1.16 | 400 | 1.4402 | 0.8921 | 0.8520 |
2.4602 | 1.45 | 500 | 1.1721 | 0.9024 | 0.8674 |
2.4602 | 1.74 | 600 | 1.2702 | 0.8802 | 0.8257 |
2.4602 | 2.03 | 700 | 1.0680 | 0.9024 | 0.8591 |
2.4602 | 2.33 | 800 | 0.9821 | 0.9063 | 0.8646 |
2.4602 | 2.62 | 900 | 1.3768 | 0.8968 | 0.8527 |
0.9918 | 2.91 | 1000 | 0.7974 | 0.9087 | 0.8714 |
0.9918 | 3.2 | 1100 | 1.0358 | 0.9040 | 0.8615 |
0.9918 | 3.49 | 1200 | 0.9499 | 0.9079 | 0.8699 |
0.9918 | 3.78 | 1300 | 0.7355 | 0.9119 | 0.8746 |
0.9918 | 4.07 | 1400 | 0.7246 | 0.9167 | 0.8816 |
0.5944 | 4.36 | 1500 | 0.8613 | 0.9151 | 0.8778 |
0.5944 | 4.65 | 1600 | 0.7733 | 0.9159 | 0.8808 |
0.5944 | 4.94 | 1700 | 1.0419 | 0.9040 | 0.8692 |
0.5944 | 5.23 | 1800 | 0.8956 | 0.9056 | 0.8684 |
0.5944 | 5.52 | 1900 | 0.8585 | 0.9071 | 0.8692 |
0.4606 | 5.81 | 2000 | 0.7825 | 0.9127 | 0.8697 |
0.4606 | 6.1 | 2100 | 0.7634 | 0.9111 | 0.8656 |
0.4606 | 6.4 | 2200 | 0.8163 | 0.9151 | 0.8690 |
0.4606 | 6.69 | 2300 | 0.7891 | 0.9103 | 0.8686 |
0.4606 | 6.98 | 2400 | 0.6864 | 0.9198 | 0.8851 |
0.3809 | 7.27 | 2500 | 0.7646 | 0.9040 | 0.8652 |
0.3809 | 7.56 | 2600 | 0.9059 | 0.8984 | 0.8640 |
0.3809 | 7.85 | 2700 | 0.6860 | 0.9087 | 0.8632 |
0.3809 | 8.14 | 2800 | 0.7117 | 0.9095 | 0.8695 |
0.3809 | 8.43 | 2900 | 0.7996 | 0.9087 | 0.8675 |
0.3317 | 8.72 | 3000 | 0.6584 | 0.9127 | 0.8684 |
0.3317 | 9.01 | 3100 | 0.6155 | 0.9151 | 0.8835 |
0.3317 | 9.3 | 3200 | 0.6338 | 0.9183 | 0.8756 |
0.3317 | 9.59 | 3300 | 0.6210 | 0.9119 | 0.8749 |
0.3317 | 9.88 | 3400 | 0.7005 | 0.9151 | 0.8788 |
0.2872 | 10.17 | 3500 | 0.6408 | 0.9206 | 0.8842 |
0.2872 | 10.47 | 3600 | 0.5883 | 0.9143 | 0.8703 |
0.2872 | 10.76 | 3700 | 0.5575 | 0.9159 | 0.8769 |
0.2872 | 11.05 | 3800 | 0.6276 | 0.9143 | 0.8791 |
0.2872 | 11.34 | 3900 | 0.6712 | 0.9175 | 0.8720 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3