generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

scenario-kd-from-pre-finetune-silver-div-2-data-indolem_sentiment-model-xlm-robe

This model is a fine-tuned version of xlm-roberta-base on the indolem_sentiment dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.88 100 10.0868 0.6617 0.6064
No log 1.75 200 4.8175 0.8095 0.6885
No log 2.63 300 7.1235 0.7820 0.7129
No log 3.51 400 5.2677 0.8296 0.6699
5.2778 4.39 500 4.2716 0.8471 0.7289
5.2778 5.26 600 6.7596 0.8020 0.5990
5.2778 6.14 700 5.5708 0.8296 0.6699
5.2778 7.02 800 8.7370 0.7769 0.4331
5.2778 7.89 900 5.6004 0.8346 0.7442
1.5264 8.77 1000 4.5021 0.8521 0.7511
1.5264 9.65 1100 4.6897 0.8697 0.7658
1.5264 10.53 1200 4.9296 0.8521 0.7424
1.5264 11.4 1300 6.1323 0.8195 0.6471
1.5264 12.28 1400 5.2312 0.8471 0.7382
0.7493 13.16 1500 4.9099 0.8521 0.7704
0.7493 14.04 1600 5.8251 0.8496 0.7273
0.7493 14.91 1700 4.3103 0.8471 0.7404
0.7493 15.79 1800 8.6020 0.7945 0.5176
0.7493 16.67 1900 5.9061 0.8421 0.6897
0.5237 17.54 2000 4.5787 0.8496 0.7273
0.5237 18.42 2100 4.7173 0.8546 0.7583
0.5237 19.3 2200 3.8765 0.8596 0.7724
0.5237 20.18 2300 5.0898 0.8496 0.7500
0.5237 21.05 2400 4.8015 0.8446 0.7156
0.3612 21.93 2500 4.2518 0.8521 0.7424
0.3612 22.81 2600 4.4654 0.8446 0.7459
0.3612 23.68 2700 4.9417 0.8471 0.7510
0.3612 24.56 2800 5.7947 0.8471 0.7240
0.3612 25.44 2900 4.2916 0.8797 0.8033
0.2448 26.32 3000 4.5161 0.8571 0.7489
0.2448 27.19 3100 5.1830 0.8596 0.7667
0.2448 28.07 3200 5.1865 0.8346 0.7462
0.2448 28.95 3300 4.3948 0.8571 0.7692
0.2448 29.82 3400 5.1436 0.8446 0.7156
0.2034 30.7 3500 5.2358 0.8471 0.7550
0.2034 31.58 3600 4.2826 0.8571 0.7654
0.2034 32.46 3700 5.2970 0.8396 0.7091
0.2034 33.33 3800 5.5713 0.8521 0.7424
0.2034 34.21 3900 5.3156 0.8571 0.7299
0.1679 35.09 4000 6.0690 0.8421 0.7549
0.1679 35.96 4100 5.5894 0.8421 0.7273
0.1679 36.84 4200 5.4521 0.8496 0.7619
0.1679 37.72 4300 5.2742 0.8521 0.7424
0.1679 38.6 4400 6.2977 0.8271 0.6497

Framework versions