generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

scenario-kd-from-pre-finetune-gold-silver-div-2-data-smsa-model-xlm-roberta-base

This model is a fine-tuned version of xlm-roberta-base on the smsa dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.29 100 3.1310 0.8270 0.7450
No log 0.58 200 2.0604 0.8810 0.8322
No log 0.87 300 1.8511 0.8944 0.8397
No log 1.16 400 1.7322 0.8992 0.8595
2.5788 1.45 500 1.5513 0.9040 0.8621
2.5788 1.74 600 1.2492 0.9127 0.8798
2.5788 2.03 700 1.2945 0.9048 0.8708
2.5788 2.33 800 1.5817 0.8992 0.8589
2.5788 2.62 900 1.1143 0.9119 0.8740
1.1147 2.91 1000 1.3242 0.9087 0.8739
1.1147 3.2 1100 1.1148 0.9135 0.8721
1.1147 3.49 1200 1.2345 0.9135 0.8790
1.1147 3.78 1300 1.1505 0.9127 0.8730
1.1147 4.07 1400 1.1927 0.9167 0.8736
0.7747 4.36 1500 1.2222 0.9063 0.8708
0.7747 4.65 1600 1.0822 0.9175 0.8795
0.7747 4.94 1700 1.2050 0.9079 0.8650
0.7747 5.23 1800 1.0231 0.9214 0.8891
0.7747 5.52 1900 1.0107 0.9127 0.8808
0.6391 5.81 2000 0.9254 0.9230 0.8896
0.6391 6.1 2100 0.9551 0.9175 0.8833
0.6391 6.4 2200 1.0021 0.9143 0.8742
0.6391 6.69 2300 1.2207 0.9079 0.8553
0.6391 6.98 2400 0.8913 0.9175 0.8827
0.5391 7.27 2500 1.2447 0.9032 0.8557
0.5391 7.56 2600 0.9456 0.9119 0.8777
0.5391 7.85 2700 0.9517 0.9294 0.8966
0.5391 8.14 2800 0.8927 0.9206 0.8812
0.5391 8.43 2900 1.0042 0.9167 0.8780
0.4633 8.72 3000 0.9702 0.9159 0.8776
0.4633 9.01 3100 0.9880 0.9167 0.8774
0.4633 9.3 3200 1.0195 0.9159 0.8768
0.4633 9.59 3300 1.0196 0.9175 0.8855
0.4633 9.88 3400 0.8555 0.9214 0.8913
0.4361 10.17 3500 0.9175 0.9079 0.8734
0.4361 10.47 3600 0.8892 0.9198 0.8799
0.4361 10.76 3700 0.9140 0.9238 0.8942
0.4361 11.05 3800 0.8742 0.9238 0.8901
0.4361 11.34 3900 0.9916 0.9143 0.8750
0.3879 11.63 4000 0.9187 0.9175 0.8832
0.3879 11.92 4100 0.8446 0.9190 0.8818
0.3879 12.21 4200 0.8563 0.9198 0.8882

Framework versions