generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

scenario-kd-from-scratch-gold-silver-data-indolem_sentiment-model-xlm-roberta-ba

This model is a fine-tuned version of xlm-roberta-base on the indolem_sentiment dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.88 100 10.3302 0.6717 0.5498
No log 1.75 200 9.1280 0.7318 0.6323
No log 2.63 300 8.9793 0.7519 0.6551
No log 3.51 400 8.0335 0.8221 0.6758
6.8324 4.39 500 11.7796 0.7494 0.6732
6.8324 5.26 600 11.2177 0.7419 0.6709
6.8324 6.14 700 8.1424 0.8195 0.7049
6.8324 7.02 800 9.1449 0.8095 0.6381
6.8324 7.89 900 8.5068 0.8020 0.6393
2.421 8.77 1000 9.1862 0.8120 0.6606
2.421 9.65 1100 8.1178 0.8120 0.6835
2.421 10.53 1200 7.8290 0.8246 0.6983
2.421 11.4 1300 9.2880 0.8120 0.6154
2.421 12.28 1400 9.8865 0.7970 0.5318
1.6481 13.16 1500 10.6401 0.8120 0.5714
1.6481 14.04 1600 9.7094 0.8045 0.6214
1.6481 14.91 1700 7.8479 0.8371 0.7234
1.6481 15.79 1800 9.5132 0.8271 0.6634
1.6481 16.67 1900 10.2200 0.7870 0.6886
1.4967 17.54 2000 8.3184 0.8271 0.6820
1.4967 18.42 2100 8.2454 0.8195 0.6697
1.4967 19.3 2200 8.1251 0.8246 0.6392
1.4967 20.18 2300 8.7633 0.8145 0.6022
1.4967 21.05 2400 8.4419 0.8070 0.6351
0.9451 21.93 2500 9.2928 0.7995 0.5238
0.9451 22.81 2600 9.8403 0.8045 0.5568
0.9451 23.68 2700 8.7286 0.8095 0.5778
0.9451 24.56 2800 8.0295 0.8371 0.7257
0.9451 25.44 2900 8.9716 0.7920 0.6982
0.931 26.32 3000 9.6346 0.8070 0.5838
0.931 27.19 3100 8.8305 0.8070 0.6244
0.931 28.07 3200 8.7564 0.8145 0.6864
0.931 28.95 3300 8.7550 0.8195 0.6327
0.931 29.82 3400 9.4704 0.8170 0.5922
0.7372 30.7 3500 8.3372 0.8045 0.61
0.7372 31.58 3600 8.8144 0.8221 0.6816
0.7372 32.46 3700 8.5465 0.8246 0.6818
0.7372 33.33 3800 7.8328 0.8170 0.6812
0.7372 34.21 3900 8.3860 0.8271 0.7113
0.729 35.09 4000 8.9969 0.7945 0.5495
0.729 35.96 4100 9.1585 0.8070 0.6244
0.729 36.84 4200 8.3759 0.8120 0.6606
0.729 37.72 4300 8.4298 0.8120 0.6231

Framework versions