generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

scenario-kd-from-scratch-silver-data-indolem_sentiment-model-xlm-roberta-base

This model is a fine-tuned version of xlm-roberta-base on the indolem_sentiment dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.88 100 12.8614 0.5965 0.5589
No log 1.75 200 7.3545 0.8095 0.6122
No log 2.63 300 6.7410 0.8221 0.6537
No log 3.51 400 6.6248 0.8221 0.6635
6.3557 4.39 500 7.7312 0.8020 0.6973
6.3557 5.26 600 6.8030 0.8020 0.6827
6.3557 6.14 700 7.2582 0.8145 0.6337
6.3557 7.02 800 7.2238 0.8045 0.6977
6.3557 7.89 900 7.5518 0.7794 0.6716
1.9555 8.77 1000 9.5252 0.7519 0.6551
1.9555 9.65 1100 7.4447 0.8246 0.65
1.9555 10.53 1200 9.5618 0.8020 0.5212
1.9555 11.4 1300 6.6724 0.8221 0.6979
1.9555 12.28 1400 6.6052 0.8246 0.6930
1.4165 13.16 1500 6.8108 0.8145 0.6838
1.4165 14.04 1600 7.1792 0.8346 0.6916
1.4165 14.91 1700 8.4259 0.7744 0.6715
1.4165 15.79 1800 7.0160 0.8321 0.6996
1.4165 16.67 1900 7.1200 0.8070 0.6667
1.0272 17.54 2000 9.0392 0.7494 0.6552
1.0272 18.42 2100 7.4422 0.8195 0.6364
1.0272 19.3 2200 6.7059 0.8095 0.6833
1.0272 20.18 2300 7.8892 0.8120 0.6544
1.0272 21.05 2400 8.2249 0.8095 0.5824
0.9378 21.93 2500 7.2143 0.8145 0.63
0.9378 22.81 2600 7.0931 0.8095 0.6481
0.9378 23.68 2700 7.7609 0.8170 0.6096
0.9378 24.56 2800 7.0980 0.8195 0.6505
0.9378 25.44 2900 5.8459 0.8321 0.7309
0.8777 26.32 3000 8.9860 0.7945 0.4875
0.8777 27.19 3100 7.9930 0.8145 0.6105
0.8777 28.07 3200 7.2410 0.8045 0.6667
0.8777 28.95 3300 7.1432 0.8170 0.6368
0.8777 29.82 3400 7.1618 0.8246 0.6535
0.6685 30.7 3500 7.2110 0.8045 0.6455
0.6685 31.58 3600 6.5962 0.8296 0.6699
0.6685 32.46 3700 7.9600 0.8170 0.6256
0.6685 33.33 3800 7.0565 0.7995 0.6774
0.6685 34.21 3900 6.8412 0.8120 0.6575
0.5701 35.09 4000 8.5415 0.8095 0.5730
0.5701 35.96 4100 7.5700 0.8145 0.6146
0.5701 36.84 4200 6.8730 0.8095 0.6807
0.5701 37.72 4300 6.9817 0.8070 0.6385
0.5701 38.6 4400 6.9924 0.7920 0.6719

Framework versions