generated_from_trainer

<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->

scenario-kd-from-post-finetune-gold-silver-div-3-8000-data-smsa-model-haryoaw-sc

This model is a fine-tuned version of haryoaw/scenario-normal-finetune-clf-data-smsa-model-xlm-roberta-base on the smsa dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.4 100 2.7237 0.8627 0.8226
No log 0.8 200 1.9013 0.8905 0.8594
No log 1.2 300 1.7793 0.8944 0.8548
No log 1.6 400 1.7672 0.8921 0.8588
2.2175 2.0 500 1.5303 0.9016 0.8583
2.2175 2.4 600 1.5394 0.9040 0.8627
2.2175 2.8 700 1.3986 0.9056 0.8639
2.2175 3.2 800 1.5774 0.8984 0.8492
2.2175 3.6 900 1.4396 0.8952 0.8609
0.9672 4.0 1000 1.2810 0.9071 0.8673
0.9672 4.4 1100 1.1932 0.9103 0.8718
0.9672 4.8 1200 1.1350 0.9119 0.8742
0.9672 5.2 1300 1.2363 0.9135 0.8780
0.9672 5.6 1400 1.1641 0.9071 0.8626
0.6841 6.0 1500 1.1281 0.9079 0.8719
0.6841 6.4 1600 1.1603 0.9159 0.8763
0.6841 6.8 1700 1.2870 0.9087 0.8738
0.6841 7.2 1800 1.0976 0.9111 0.8760
0.6841 7.6 1900 1.1423 0.9143 0.8816
0.5322 8.0 2000 1.3210 0.9040 0.8668
0.5322 8.4 2100 1.1357 0.9151 0.8804
0.5322 8.8 2200 1.1500 0.9111 0.8800
0.5322 9.2 2300 1.0416 0.9103 0.8704
0.5322 9.6 2400 1.1862 0.9040 0.8637
0.4735 10.0 2500 1.1656 0.9063 0.8702
0.4735 10.4 2600 1.0991 0.9190 0.8843
0.4735 10.8 2700 1.0836 0.9119 0.8730
0.4735 11.2 2800 1.1783 0.9079 0.8632
0.4735 11.6 2900 1.0525 0.9119 0.8772
0.4363 12.0 3000 1.0336 0.9183 0.8834
0.4363 12.4 3100 1.0902 0.9175 0.8792
0.4363 12.8 3200 1.0225 0.9214 0.8798
0.4363 13.2 3300 1.1369 0.9056 0.8592
0.4363 13.6 3400 1.0268 0.9087 0.8697
0.4078 14.0 3500 1.0688 0.9127 0.8707
0.4078 14.4 3600 0.9677 0.9119 0.8770
0.4078 14.8 3700 1.0233 0.9135 0.8772
0.4078 15.2 3800 0.9663 0.9206 0.8830
0.4078 15.6 3900 0.9963 0.9198 0.8838
0.3809 16.0 4000 1.0626 0.9087 0.8715
0.3809 16.4 4100 0.9617 0.9159 0.8815

Framework versions