<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
passive_invoices_v2.3
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0566
- Precision: 0.9324
- Recall: 0.9348
- F1: 0.9336
- Accuracy: 0.9886
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 6000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.15 | 100 | 1.0186 | 0.3274 | 0.0121 | 0.0233 | 0.7863 |
No log | 0.29 | 200 | 0.6958 | 0.3536 | 0.2604 | 0.2999 | 0.8433 |
No log | 0.44 | 300 | 0.4969 | 0.5328 | 0.4943 | 0.5128 | 0.8973 |
No log | 0.59 | 400 | 0.3566 | 0.7209 | 0.6777 | 0.6986 | 0.9374 |
0.8847 | 0.74 | 500 | 0.2788 | 0.7946 | 0.7569 | 0.7753 | 0.9550 |
0.8847 | 0.88 | 600 | 0.2184 | 0.8252 | 0.8058 | 0.8154 | 0.9628 |
0.8847 | 1.03 | 700 | 0.1919 | 0.8528 | 0.8183 | 0.8352 | 0.9657 |
0.8847 | 1.18 | 800 | 0.1752 | 0.8390 | 0.8346 | 0.8368 | 0.9647 |
0.8847 | 1.33 | 900 | 0.1566 | 0.8661 | 0.8387 | 0.8522 | 0.9705 |
0.2412 | 1.47 | 1000 | 0.1383 | 0.8710 | 0.8561 | 0.8635 | 0.9731 |
0.2412 | 1.62 | 1100 | 0.1324 | 0.8584 | 0.8594 | 0.8589 | 0.9715 |
0.2412 | 1.77 | 1200 | 0.1248 | 0.8799 | 0.8743 | 0.8771 | 0.9746 |
0.2412 | 1.91 | 1300 | 0.1243 | 0.8617 | 0.8763 | 0.8689 | 0.9728 |
0.2412 | 2.06 | 1400 | 0.1090 | 0.8771 | 0.8787 | 0.8779 | 0.9758 |
0.1444 | 2.21 | 1500 | 0.1063 | 0.8927 | 0.8820 | 0.8873 | 0.9774 |
0.1444 | 2.36 | 1600 | 0.1047 | 0.8798 | 0.8943 | 0.8870 | 0.9762 |
0.1444 | 2.5 | 1700 | 0.1002 | 0.9025 | 0.8940 | 0.8983 | 0.9788 |
0.1444 | 2.65 | 1800 | 0.0937 | 0.9078 | 0.8896 | 0.8986 | 0.9801 |
0.1444 | 2.8 | 1900 | 0.0952 | 0.9003 | 0.8958 | 0.8981 | 0.9800 |
0.1168 | 2.95 | 2000 | 0.0867 | 0.9127 | 0.8945 | 0.9035 | 0.9815 |
0.1168 | 3.09 | 2100 | 0.0919 | 0.9156 | 0.8881 | 0.9017 | 0.9814 |
0.1168 | 3.24 | 2200 | 0.0845 | 0.9089 | 0.9035 | 0.9062 | 0.9818 |
0.1168 | 3.39 | 2300 | 0.0785 | 0.9155 | 0.9107 | 0.9131 | 0.9836 |
0.1168 | 3.53 | 2400 | 0.0785 | 0.9118 | 0.9122 | 0.9120 | 0.9831 |
0.0876 | 3.68 | 2500 | 0.0816 | 0.9087 | 0.9144 | 0.9115 | 0.9816 |
0.0876 | 3.83 | 2600 | 0.0794 | 0.9103 | 0.9107 | 0.9105 | 0.9820 |
0.0876 | 3.98 | 2700 | 0.0734 | 0.9145 | 0.9179 | 0.9162 | 0.9834 |
0.0876 | 4.12 | 2800 | 0.0719 | 0.9182 | 0.9212 | 0.9197 | 0.9846 |
0.0876 | 4.27 | 2900 | 0.0732 | 0.9235 | 0.9166 | 0.9201 | 0.9844 |
0.0707 | 4.42 | 3000 | 0.0673 | 0.9160 | 0.9256 | 0.9208 | 0.9846 |
0.0707 | 4.57 | 3100 | 0.0787 | 0.9312 | 0.9085 | 0.9197 | 0.9843 |
0.0707 | 4.71 | 3200 | 0.0644 | 0.9298 | 0.9241 | 0.9269 | 0.9856 |
0.0707 | 4.86 | 3300 | 0.0676 | 0.9308 | 0.9153 | 0.9230 | 0.9852 |
0.0707 | 5.01 | 3400 | 0.0629 | 0.9240 | 0.9201 | 0.9221 | 0.9857 |
0.0635 | 5.15 | 3500 | 0.0691 | 0.9206 | 0.9153 | 0.9179 | 0.9848 |
0.0635 | 5.3 | 3600 | 0.0715 | 0.9269 | 0.9215 | 0.9242 | 0.9854 |
0.0635 | 5.45 | 3700 | 0.0659 | 0.9230 | 0.9206 | 0.9218 | 0.9853 |
0.0635 | 5.6 | 3800 | 0.0652 | 0.9194 | 0.9239 | 0.9216 | 0.9852 |
0.0635 | 5.74 | 3900 | 0.0652 | 0.9253 | 0.9182 | 0.9217 | 0.9859 |
0.052 | 5.89 | 4000 | 0.0646 | 0.9259 | 0.9212 | 0.9236 | 0.9863 |
0.052 | 6.04 | 4100 | 0.0601 | 0.9300 | 0.9298 | 0.9299 | 0.9869 |
0.052 | 6.19 | 4200 | 0.0643 | 0.9285 | 0.9234 | 0.9260 | 0.9866 |
0.052 | 6.33 | 4300 | 0.0611 | 0.9173 | 0.9243 | 0.9208 | 0.9862 |
0.052 | 6.48 | 4400 | 0.0605 | 0.9286 | 0.9267 | 0.9276 | 0.9871 |
0.0496 | 6.63 | 4500 | 0.0604 | 0.9257 | 0.9296 | 0.9276 | 0.9872 |
0.0496 | 6.77 | 4600 | 0.0616 | 0.9261 | 0.9322 | 0.9291 | 0.9874 |
0.0496 | 6.92 | 4700 | 0.0609 | 0.9290 | 0.9276 | 0.9283 | 0.9873 |
0.0496 | 7.07 | 4800 | 0.0599 | 0.9259 | 0.9318 | 0.9288 | 0.9877 |
0.0496 | 7.22 | 4900 | 0.0587 | 0.9307 | 0.9315 | 0.9311 | 0.9881 |
0.0383 | 7.36 | 5000 | 0.0594 | 0.9292 | 0.9305 | 0.9298 | 0.9877 |
0.0383 | 7.51 | 5100 | 0.0594 | 0.9357 | 0.9291 | 0.9324 | 0.9880 |
0.0383 | 7.66 | 5200 | 0.0597 | 0.9350 | 0.9305 | 0.9327 | 0.9878 |
0.0383 | 7.81 | 5300 | 0.0572 | 0.9288 | 0.9333 | 0.9311 | 0.9884 |
0.0383 | 7.95 | 5400 | 0.0569 | 0.9331 | 0.9340 | 0.9336 | 0.9885 |
0.0397 | 8.1 | 5500 | 0.0567 | 0.9346 | 0.9346 | 0.9346 | 0.9886 |
0.0397 | 8.25 | 5600 | 0.0567 | 0.9359 | 0.9355 | 0.9357 | 0.9889 |
0.0397 | 8.39 | 5700 | 0.0560 | 0.9307 | 0.9344 | 0.9326 | 0.9885 |
0.0397 | 8.54 | 5800 | 0.0570 | 0.9342 | 0.9342 | 0.9342 | 0.9888 |
0.0397 | 8.69 | 5900 | 0.0565 | 0.9325 | 0.9340 | 0.9332 | 0.9887 |
0.0329 | 8.84 | 6000 | 0.0566 | 0.9324 | 0.9348 | 0.9336 | 0.9886 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu118
- Datasets 2.2.2
- Tokenizers 0.13.3