<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
Important Note:
I created the combined
metric (55% F1 score + 45% exact match score) and load the state with the best result at the end. Here is the setting in the TrainingArguments
:
load_best_model_at_end=True,
metric_for_best_model='combined',
greater_is_better=True,
DSPFirst-Finetuning-5
This model is a fine-tuned version of ahotrod/electra_large_discriminator_squad2_512 on a generated Questions and Answers dataset from the DSPFirst textbook based on the SQuAD 2.0 format.<br /> It achieves the following results on the evaluation set:
- Loss: 0.8529
- Exact: 67.0964
- F1: 74.4842
- Combined: 71.1597
More accurate metrics:
Before fine-tuning:
'HasAns_exact': 54.71817606079797,
'HasAns_f1': 61.08672724332754,
'HasAns_total': 1579,
'NoAns_exact': 88.78048780487805,
'NoAns_f1': 88.78048780487805,
'NoAns_total': 205,
'best_exact': 58.63228699551569,
'best_exact_thresh': 0.0,
'best_f1': 64.26902596256402,
'best_f1_thresh': 0.0,
'exact': 58.63228699551569,
'f1': 64.26902596256404,
'total': 1784
After fine-tuning:
'HasAns_exact': 67.57441418619379,
'HasAns_f1': 75.92137683558988,
'HasAns_total': 1579,
'NoAns_exact': 63.41463414634146,
'NoAns_f1': 63.41463414634146,
'NoAns_total': 205,
'best_exact': 67.0964125560538,
'best_exact_thresh': 0.0,
'best_f1': 74.48422310728503,
'best_f1_thresh': 0.0,
'exact': 67.0964125560538,
'f1': 74.48422310728503,
'total': 1784
Dataset
A visualization of the dataset can be found here.<br /> The split between train and test is 70% and 30% respectively.
DatasetDict({
train: Dataset({
features: ['id', 'title', 'context', 'question', 'answers'],
num_rows: 4160
})
test: Dataset({
features: ['id', 'title', 'context', 'question', 'answers'],
num_rows: 1784
})
})
Intended uses & limitations
This model is fine-tuned to answer questions from the DSPFirst textbook. I'm not really sure what I am doing so you should review before using it.<br /> Also, you should improve the Dataset either by using a better generated questions and answers model (currently using https://github.com/patil-suraj/question_generation) or perform data augmentation to increase dataset size.
Training and evaluation data
batch_size
of 6 results in 14.03 GB VRAM- Utilizes
gradient_accumulation_steps
to get total batch size to 516 (total batch size should be at least 256) - 4.52 GB RAM
- 30% of the total questions is dedicated for evaluating.
Training procedure
- The model was trained from Google Colab
- Utilizes Tesla P100 16GB, took 6.3 hours to train
load_best_model_at_end
is enabled in TrainingArguments
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 86
- total_train_batch_size: 516
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
Model hyperparameters
- hidden_dropout_prob: 0.36
- attention_probs_dropout_prob = 0.36
Training results
Training Loss | Epoch | Step | Validation Loss | Exact | F1 | Combined |
---|---|---|---|---|---|---|
2.3222 | 0.81 | 20 | 1.0363 | 60.3139 | 68.8586 | 65.0135 |
1.6149 | 1.65 | 40 | 0.9702 | 64.7422 | 72.5555 | 69.0395 |
1.2375 | 2.49 | 60 | 1.0007 | 64.6861 | 72.6306 | 69.0556 |
1.0417 | 3.32 | 80 | 0.9963 | 66.0874 | 73.8634 | 70.3642 |
0.9401 | 4.16 | 100 | 0.8803 | 67.0964 | 74.4842 | 71.1597 |
0.8799 | 4.97 | 120 | 0.8652 | 66.7040 | 74.1267 | 70.7865 |
0.8712 | 5.81 | 140 | 0.8921 | 66.3677 | 73.7213 | 70.4122 |
0.8311 | 6.65 | 160 | 0.8529 | 66.3117 | 73.4039 | 70.2124 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1