<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. -->
wbc-1-no-pretrain-20-epoch
This model is a fine-tuned version of on the image_folder dataset. It achieves the following results on the evaluation set:
- Loss: 1.5206
- Accuracy: 0.2529
- F1: 0.3026
- Precision: 0.4679
- Recall: 0.2529
- Balanced Acc: 0.3164
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Balanced Acc |
---|---|---|---|---|---|---|---|---|
1.8139 | 1.0 | 1 | 2.3212 | 0.2390 | 0.0941 | 0.6697 | 0.2390 | 0.1999 |
2.599 | 2.0 | 2 | 1.8564 | 0.0758 | 0.0157 | 0.4431 | 0.0758 | 0.2009 |
2.1237 | 3.0 | 3 | 1.4615 | 0.4201 | 0.3957 | 0.4963 | 0.4201 | 0.1818 |
1.6982 | 4.0 | 4 | 1.4610 | 0.1916 | 0.2228 | 0.3845 | 0.1916 | 0.2388 |
1.3638 | 5.0 | 5 | 1.6983 | 0.1233 | 0.1453 | 0.3596 | 0.1233 | 0.2732 |
1.3708 | 6.0 | 6 | 1.9058 | 0.0706 | 0.0829 | 0.3547 | 0.0706 | 0.2399 |
1.4827 | 7.0 | 7 | 1.8382 | 0.0978 | 0.1119 | 0.4003 | 0.0978 | 0.2636 |
1.4045 | 8.0 | 8 | 1.6737 | 0.1597 | 0.1662 | 0.4549 | 0.1597 | 0.3207 |
1.266 | 9.0 | 9 | 1.5555 | 0.2020 | 0.2343 | 0.4641 | 0.2020 | 0.3286 |
1.1897 | 10.0 | 10 | 1.4769 | 0.2847 | 0.3255 | 0.4437 | 0.2847 | 0.2450 |
1.1834 | 11.0 | 11 | 1.4604 | 0.3073 | 0.3425 | 0.4739 | 0.3073 | 0.2310 |
1.1725 | 12.0 | 12 | 1.4715 | 0.3073 | 0.3469 | 0.4774 | 0.3073 | 0.2475 |
1.1325 | 13.0 | 13 | 1.5005 | 0.2616 | 0.3081 | 0.4430 | 0.2616 | 0.2695 |
1.087 | 14.0 | 14 | 1.5360 | 0.2176 | 0.2553 | 0.4695 | 0.2176 | 0.3180 |
1.0599 | 15.0 | 15 | 1.5429 | 0.2066 | 0.2298 | 0.4766 | 0.2066 | 0.3217 |
1.0476 | 16.0 | 16 | 1.5366 | 0.2002 | 0.2256 | 0.4671 | 0.2002 | 0.3151 |
1.0375 | 17.0 | 17 | 1.5279 | 0.2153 | 0.2502 | 0.4666 | 0.2153 | 0.3278 |
1.026 | 18.0 | 18 | 1.5222 | 0.2315 | 0.2762 | 0.4551 | 0.2315 | 0.3192 |
1.0153 | 19.0 | 19 | 1.5205 | 0.2477 | 0.2966 | 0.4627 | 0.2477 | 0.3187 |
1.0075 | 20.0 | 20 | 1.5206 | 0.2529 | 0.3026 | 0.4679 | 0.2529 | 0.3164 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3